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Preliminaries

Lecture: Tues 1:00pm-2:40pm. 60 Fifth Avenue, C10.
Lab: Wed 8:35pm-9:25pm. 60 Fifth Avenue, C12. Leader: Lei Xu.

Office hours: (Gill) Tue, 3pm-4:30pm, 60 Fifth Avenue, 620. (Xu) Wed,
1:30pm-3pm, 60 Fifth Avenue, 665.

Course webpage: on NYU classes. The lecture slides are posted after
each lecture.

Exams: Tuesday, March 6, 1:00pm—-2:40pm (Midterm) and Tuesday, May 15,
2:00pm-3:50pm (Final). Note: date and timing of final subject to change,
from NYU Registrar.



Preliminaries

Texts: There is NO required textbook. Recommended books:

« [IR] Imbens, G. and Rubin, D. (2015). Causal Inference for Statistics,
Social, and Biomedical Sciences. An Introduction. Cambridge
University Press.

« [MW] Morgan, S., and Winship, C. (2014). Counterfactuals and Causal
Inference: Methods and Principles for Social Research, 2nd Edition.
Cambridge.

« [PG)] Pearl, J., Glymour, M., and Jewell, N. (2016). Causal Inference in
Statistics: A Primer. Wiley.

Others listed on syllabus.



This course

The course is on causal inference, mostly with applications from
business, economics, and politics. The course will discuss controlled
experiments as well as observational studies.’

Our focus will be both on theory and application. Where appropriate, |
will attempt to tailor applications towards issues you may face in your
own research or work.

| will consider the course a success if you grasp fundamental issues in
causal inference, and can apply those concepts to everyday problems
you face in application.

"Major credit due to Alfred Galichon, who first taught this course last year at CDS, and
from whom much of content and structure of this course is derived.


http://alfredgalichon.com

This course

Programming: The official language of the course will be R, but you are
welcome to use the language of your choice — e.g. Python, Julia... A short
tutorial on R will be provided by Lei in this week’s lab.

Final grade: Class attendance/participation (10%), Homework (35%),
Midterm (25%), Final Exam (30%).

Homework: roughly every other week. Will frequently involve analyzing a
dataset using the methods seen in class; sometimes it may involve
critiquing a research paper. Homework will be managed through NYU
Classes. Full homework policies are listed on syllabus.

Questions?



Course outline




Outline: partsland Il

Part I. Introduction
L1 Basic questions Jan 23
L2 The potential outcome model Jan 30

Part Il. Randomized experiments
L3 RCTs, AB testing, business experiments (1) Feb 6
L4 RCTs, AB testing, business experiments (2) Feb 13
L5 Noncompliance, instrumental variables (1) Feb 20



Outline: part il

Part Ill: observational studies

L6 IV (2) and observational studies Feb 27
Midterm Lectures 1-6 Mar 6
L7 Matching estimators Mar 20
L8 Diff-in-Diff, regression discontinuity Mar 27
Lo Extending Diff-in-Diff Apr 3

L10 High-dimensional models Apr 10



Outline: part IV

Part IV: special topics
Laa  Practical challenges with inference Apr 17
L12 Causal inference in networks Apr 24
L13 Machine learning and causal inference May 1
Final Lectures 1-13 May 15

10



Help me learn about you!

1"



Please take a few minutes to complete the following survey.

http:/ /bit.ly/2BjDlju

12


http://bit.ly/2BjDIju

Today

13



Part I. Introduction.

Lecture 1. Causal inference: motivating examples

References:

« MW, Chapter 1

+ Holland, P. (1986). “Statistics and Causal Inference.” Journal of the
American Statistical Association.

« Angrist, J. and Pischke, J-S. (2010). “The Credibility Revolution in
Empirical Economics: How Better Research Design is Taking the Con
out of Econometrics,” Journal of Economic Perspectives.
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What is causal inference? Some typical questions

« Does education cause earnings? How large is the effect? If
individuals with a college degree had a master’s degree, by how
much would their earnings increase?

« What is the effect of fertilizer on crop yield?

« How does healthcare affect income?

- How does advertising affect sales/clickthroughs?

« What is the effect of minimum wage on employment?
« What causes individuals to turnout to vote?

- How does race/gender influence hiring decisions?

15



What is causal inference? Some important concepts

« Association vs causality.

Spurious relationships; confounding factors; common
response/“lurking” variables.

Experiments vs observational studies

Potential outcomes, counterfactuals

Local effects versus population-level effects

Compliance with treatment

A fun link on spurious correlations.

16


http://www.tylervigen.com/spurious-correlations

T VSED 1 THINK, THEN T TOOK A | | SOUNDS LIKE THE
CORRELATION MPUED STATISTICS CLAss. | | CLASS HELPED.

I DONT,
CAUSATION. Now \ WELL, MAYBE.

SRSl

Figure 1: This may become you...

17



Even strong correlations don't imply causality...

People who hurry are often late -/ hurrying makes you late

Hotel occupancy is highest when prices are also high —/+ increasing
prices will increase demand

Places with many police officers have more crime —/ reducing police
officers will reduce crime

Wine drinkers are wealthier than beer drinkers —/ drinking wine
increases your income

Many tech CEOs never went to college —/+ less school helps your career

18



Controlled experiment vs observational studies

« Ronald Fisher (1890-1962) pioneered experimental design, in practice,
with work on crop selection, and in theory with his landmark 1935
text, The design of experiments. An experiment is controlled, which
means that the experimenter has some control on the treatment
provided to individuals. In medicine, “interventional” clinical trials.

« By contrast, in observational studies the analyst does not have a
control on the treatment to provide to individuals. Frequently the
case in social sciences. However, sometimes is is enough to
understand the determinants of providing the treatment for the
purpose of causal inference: “quasi-experiments”. In medicine,
“observational” clinical trials.

19


https://en.wikipedia.org/wiki/Ronald_Fisher

Randomization in business, economics, politics

« Randomized studies in business: AB testing, business experiments.

« Randomized studies in economics and politics:
development/campaigning field experiments.

20



Observational studies in business, economics, politics

Natural experiments
Differences-in-differences

Regression discontinuity

Instrumental variables

21



The potential outcome model

22



The potential outcome model

« The potential outcome model was pioneered by Jerzy Neyman (1923)
and extensively developed by Donald Rubin since the mid-1970s.

+ Potential outcomes: Y' and Y° if treated (1 = treatment state) or not
treated (o = control state)

* For each individual i, y? and y; denote the potential outcomes for i in
the treatment and control states. Individual treatment causal effect
is thus

o =Yyi— ¥/

23


https://en.wikipedia.org/wiki/Jerzy_Neyman
https://en.wikipedia.org/wiki/Donald_Rubin

Thinking about counterfactuals

Fundamental problem of causal inference: y? and y! (and thus §;) are
never simultaneously observed. We have:

Group Y’ Y°
Treatment (D = 1) | Observable (Y*) | (?)
Control (D = 0) (?) Observable (Y*)

The (?) are missing data: they indicate counterfactuals: “what would have
happened if i had not been treated instead of being treated?”

24
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Part I, lecture 2. The potential outcome model.

References:

« MW, Ch 2
* IR, Chapter 1-3.

« Heckman, ). “The scientific model of causality” Sociological
Methodology 2005.

- Dataset from: Lalonde, R. (1986). “Evaluating the Econometric
Evaluations of Training Programs with Experimental Data.” American
Economic Review.



The potential outcome model

« The potential outcome model was pioneered by Jerzy Neyman (1923)
and extensively developed by Donald Rubin since the mid-1970s.

+ Potential outcomes: Y' and Y° if treated (1 = treatment state) or not
treated (o = control state)

* For each individual i, y? and y; denote the potential outcomes for i in
the treatment and control states. Individual treatment causal effect
is thus

o =Yyi— ¥/


https://en.wikipedia.org/wiki/Jerzy_Neyman
https://en.wikipedia.org/wiki/Donald_Rubin

Thinking about counterfactuals

Fundamental problem of causal inference: y? and y! (and thus §;) are
never simultaneously observed. We have:

Group Y’ Y°
Treatment (D = 1) | Observable (Y*) | (?)
Control (D = 0) (?) Observable (Y*)

The (?) are missing data: they indicate counterfactuals: “what would have
happened if i had not been treated instead of being treated?”



A note on notation

| will adopt the following notation:

« Y* = YObs — YD for the observed outcome, while
« Y = (Y°,Y") for the vector of potential outcomes.

While this notation removes any possible confusion between the
observed outcome and the vector of potential outcomes, it is less
standard in the literature.



Observed outcome

+ Random treatment D € {0,1}. d; = 1 means i receives the treatment
(treatment group); d; = 0 means i does not receive the treatment
(control group).

» The obsered outcomeisY*=Y'ifD=1and Y* =Y°if D = o;
therefore
Y=Y’ =DY'+ (1-D)Y°



Average treatment effect

« The average treatment effect (ATE) is defined as
ATE = E[3] = E[Y'] — E[Y°].

« When the outcome is a binary variable, this is simply
Pr(Y'=1) — Pr(Y° =1).

« Other measures, such as the causal risk ratio Pr (Y' = 1) / Pr(Y° =1)
could also be used as an assessment of the causal effect.



Stable unit treatment value assumption (SUTVA)

SUTVA in a set of restrictions (exclusion restrictions) introduced by Rubin
in 1980. Under SUTVA:

- there is no interference: a unit’s potential outcomes are unaffected
by the treatment administered to other individuals;

« there is no hidden variation of treatment: treatment is deterministic
and exists under only one form.



SUTVA

SUTVA is not always met in practice:

- due to contagion (e.g., a vaccination campaign may have effect on
other individuals beyond the treated)

« due to equilibrium effects (e.g., too many high-skilled job applicants
may decrease wages)

« in classrooms, there may be peer effects
- in some early drug trials, patients may share a part of the medication
« education may come in various qualities

10



The assignment mechanism

« An assignment mechanism is a process that determines which
treatment is administered to units. Typically, it is the distribution of
the treatment D; of unit i conditional on the vector of potential
outcomes (Y?,Y?) and the vector of covariates X;.

« Desirable properties of assignment mechanisms are:

- individualistic: the treatment of a unit i cannot depend on the
potential outcomes, or on the covariates associated with another unit
i

« probabilistic: for every unit i, the probability of each state of the
treatment is positive.

« unconfounded: the assignment mechanism is independent of
potential outcomes, conditional on the covariates (more on this soon).

1"



The assignment mechanism (continued)

« Some authors distinguish between:

« classical randomized experiments: the three desirable properties are
known, and the form of the assignment mechanism is known and
chosen (RCTs).

« regular assignment mechanisms: same as before, but the form of the
assignment mechanism is not known or chosen (quasi-experimental
setting in observational studies).

- irregular assignment mechanisms: observational studies where one of
the desirable properties, most typically unconfoundedness, fails.

12



Formalizing the assignment mechanism

We will start by ignoring covariates. Under perfect randomization:
potential outcomes are independent from treatment, i.e.,

Y = (v°, w) 1D
This is the case in a perfectly randomized experiment; rarely in

observational studies. Of course, this does not imply that the observed
outcome Y°%s is independent from treatment D.

Under randomized treatment,

E[V D=1 =E[Y'|D=1]=E[Y]
E[Y*|D = 0] = E[Y°|D = 0] = E[¥]

13



Example: should I get a degree?

Take the example where treatment = getting a degree. Assume that
U ~ g(u) is a random variable capturing unobserved ability, and that
earnings without and with treatment are given by

Yo =f(U) and Y' =f'(U)
Then perfect randomization boils down to

Ul D

which means that treatment is perfectly uncorrelated with ability.

Realistic or not?

14



Example: should I get a degree?

Take the example where treatment = getting a degree. Assume that

U ~ g(u) is a random variable capturing unobserved ability, and that
earnings without and with treatment are given by

Yo =f(U) and Y' =f'(U)
Then perfect randomization boils down to
uunb
which means that treatment is perfectly uncorrelated with ability.

Realistic or not? We'll get back later on this example, but note that it may
not be less reasonable to assume that the more able fraction of the
population is selected into getting a degree, so that

D=1{U>u}.

14



The condition for perfect randomization
(YO,Y) 1L D

is stronger than the condition that each of the random variable defining
a potential outcome is independent from treatment, i.e.,

Y° Il Dand Y' 1L D.

« In many cases, we shall need only the weaker form. See Heckman,
Ichimura, and Todd, (1998).

« Why are (or are) the two different?

15


http://jenni.uchicago.edu/papers/Heckman_Ichimura_etal_1998_ReStud_v65_n2.pdf
http://jenni.uchicago.edu/papers/Heckman_Ichimura_etal_1998_ReStud_v65_n2.pdf

DAGs (a minor detour)

DAG: directed acyclic graph

Suppose we have three random variables, X, Y, and Z. These variables
could be represented in the following causal graph.

X Y Z
Figure 1: A basic DAG

Here, we think about arrows representing causal dependencies between
variables. These needn’t be linear, nor have any sign restriction.

16



d-separation (and conditional independence)

Taking the same example as before, the graph may help to visualize
conditional dependence.

X Y Z

Here, the graph above makes the probabilistic claim that
Z 1L X|Y

In the Pearl parlance, we can directionally-separate Z from X given Y—i.e.,
if we know Y, X provides no additional information for a prediction about
Z. Put another way, X indirectly causes Z, but only through Y.

17


https://en.wikipedia.org/wiki/Judea_Pearl

Suppose we have three random variables, X, Y, and U—e.g., schooling,
earnings, and (unobserved) student ability. With earnings as our
outcome of interest, these variables could be represented in the
following causal graph.

Figure 2: U as a confound

18



But how does this case differ from the prior?

X

Y

Figure 3: U as another confound

What does this graph mean? What are its implied conditional relations?

19



Implied (causal and probabilistic) conditional relations

« If we read this graph in terms of its implied

probabilistic relations, there may be an
observed relationship between X and Y, but X
this is not causal in nature. U
+ In other words, it is conceivable that
E[corr(X,Y)] # o, or there exhibits some Y

observed association between X and Y,
while in truth X 1L Y|U.

20



More on causal vs. probabilistic DAGs

Suppose you a sample dataset with n rows and 2 columns, with a typical
row (a;, b;) for each uniti € 1,...,n. Your goal is to learn the causal
structure between the unobserved random variables that generated
these data. Call these variables A and B.

Question: how many causal DAGs could we write down for these two
random variables (ignoring other possible variables)?

21



- A B
«-A—B
A+ B

22



What about with more variables?

Suppose you now had three variables, A, B, C. How many DAGs could exist
for these data?

23


https://link.springer.com/chapter/10.1007/BFb0069178

What about with more variables?

Suppose you now had three variables, A, B, C. How many DAGs could exist
for these data?

For those thinking this expands 2", it doesn't...

23


https://link.springer.com/chapter/10.1007/BFb0069178

What about with more variables?

Suppose you now had three variables, A, B, C. How many DAGs could exist
for these data?

For those thinking this expands 2", it doesn't...

It turns out that given n variables, the total number of possible DAGs to
draw is given by the recursion:

) = Yo 20 fin =

k=1
with f(0) = 1, and f(1) = 1. This was first demonstrated in Robinson (1977).

23


https://link.springer.com/chapter/10.1007/BFb0069178

Possible DAGs for 3 variables: A, B, C

A C A C A C A C A C
N\ N\ / /
B B B B B
a—c | a——c A e |a e |a e
NSNS NS
B B B B B
a el a—mc | Am——c | Am—c i A——c |
N/ / / . /
B B B B B

Figure 4: Korb and Nicholson, Bayesian Artificial Intelligence, 2nd Edition, pg. 245 ,,


https://www.crcpress.com/Bayesian-Artificial-Intelligence-Second-Edition/Korb-Nicholson/p/book/9781439815915

From probabalistic assumptions to DAGs, and visa versa

Suppose all you knew was X 1L Y|Z. What DAG(s) satisfy these
probabilistic conditions?

25



From probabalistic assumptions to DAGs, and visa versa

Suppose all you knew was X 1L Y|Z. What DAG(s) satisfy these
probabilistic conditions?

1. X—=Y—=>Z
2. X+ Y« Z
3.X«<Z—=Y

Note that stochastic constraints do not uniquely identify DAGs, but DAGs
will imply specific conditions.

25



Value of graphical models?

Strengths

+ For simple stories, DAGs can be intuitive

+ Useful for determining when something can be “non-parametrically
identified”

+ May help with “smoothing of data” (more on this later, or in HW)

Shortcomings

« Agnostic to functional form

« Hard to go from arbitrary sample to likely DAGs (i.e., “structure
learning” in Bayesian networks)

- A given graph is an assumption, and therefore untestable (which is
true of observational designs)

26



Going to R: a simple confounding example

set.seed(808)

N = 5000 # Number of draws

Z = rnorm(N) # N draws from standard normal
X = -1.5 + 0.5%Z + rnorm(N) # X is function of Z

Y =1 - 0.8+Z + rnorm(N) # Y is function of Z

cor(X,Y) # Correlation between X and Y

=+

summary(lm(Y ~ X)) linear regrssion of Y on X

=+

summary(lm(Y ~ Z)) linear regrssion of Y on Z

summary(lm(Y ~ X + Z)) # linear regrssion of Y on X and Z

27



Residualize the effect of the confounder

X_ = X - predict(lm(X ~ Z)) # X after residualizing Z
_ =Y - predict(lm(Y ~ Z)) # Y after residualizing Z
par(mfrow=c(1,2)) # Plotting parameters
plot(X,Y) # First plot
abline(lm(Y~X), col="blue”) # X,Y slope w.o controlling for Z
plot(X_,Y_) # Second plot

#

abline(lm(Y_~X_), col="blue”) X,Y slope after controlling for Z

28



- After controlling for
Z, the apparent
relationship
between X and Y
goes away.

« Note: corr(X,Y) =
0 =~ X 1LY, but
X1lY =
corr(X,Y) =0

Y (Residualized)

83 2 4 0 1 2 3
X (Residualized)

Figure 5: Residualizing X and Y from Z

29



Returning to Neyman-Rubin

From before, we defined the average treatment effect (ATE) as
Average Treatment Effect (ATE)

ATE = E[§] = E[Y"] — E[Y°]

We can also define different conditional average treatment effects. We
will begin with two important cases, ATT and ATC.

Average Treatment Effect for the Treated (ATT)

ATT=E[j|ID=1]=E[Y'|D=1] — E[Y°|D = 1]

Average Treatment Effect for the Controls (ATC)

ATC=E[5|D=0] = E[Y'|D = 0] — E[Y°|D = O]

30



ATE, ATT, ATC, and the “naive” estimator

ATE, ATT, and ATC are different causal estimands, as they represent
different causal quantities of interest. We will distinguish estimands
from estimators.

We note that E[Y'|D = 1] and E [Y°|D = o] are measurable; however,
E[Y°|D =1] and E[Y'|D = o] are not.
One can form a naive causal estimator by:

Naive causal estimator

Suave = E[Y'|D =1] — E[Y°|D=o0] = E[Y*|D = 1] — E[V'|D = 0].

Note that under randomized treatment, a unit's potential outcomes are
independent of treatment assignment—i.e., Y = (Y°,Y") 1L D—which

implies that 5NAIVE = ATE = ATT = ATC.
31



Bias of the naive estimator

» The naive estimator, however, does not coincide with ATE. Indeed,
letting 7 = Pr (D =1),
ATE=E[0]= 7E[Y'|D=1]+ (1—nm)E[Y'|D = 0]
— (7E[Y°ID =1+ (1 —7)E[Y°|D = 0])
thus
ATE = E[Y'|D=1] — E[Y°|D = 1]
—(1—m){E[6|D =1] — E[0|D = 0]}
= Onave — (E[Y°|D = 1] — E[Y°|D = 0])
—(1—m){E[6|D=1] — E[0|D = 0]}
 Thus, the difference between ATE and dyave comes from two terms:

« E[Y°|D =1] — E[Y°|D = 0], which is a baseline bias.
« (1—m){E[6|D = 1] — E[§|D = 0]}, a differential treatment effect bias. 32



Naive estimator vs. ATE

Thus, the difference between ATE and dyave cOmes from two terms:

« E[Y°|D = 1] — E[Y°|D = o] which is a baseline bias.
* (1—m){E[0|D =1] — E[§|D = 0]} which is a differential treatment
effect bias.

Review MW or here if you need more clarity on this derivation, as it will
be important to your HW.

33


https://economics.mit.edu/files/32

The naive estimator in the education decision example

Recall our previous education decision example. The ATE is

Eff (U)] - E[P (V)]

and the naive estimator is

6NAIVE:EV1( )|D—1—E[fo ’D O

« Under perfect randomization (U 1L D), these coincide.

+ Under the assumption of selection on ability D = 1{U > u}, we get
that

5NAIVE:E[]C1(U)|UZ —E[fo |U<U

34



The propensity score

« We now introduce a vector of covariates X: (may include age, gender,
income, education). The propensity score is defined (after
Rosenbaum and Rubin, 1983) as the probability of being assigned in
the treatment group conditional on the covariates, that is

e(x) =Pr (D,' = 1’X,' ZX) = E[D,’|X,' IX] .
- For instance, assume that there is an additional variable, “gender”
which affects treatment D, i.e.,
Pr (D = 1|Female) = 0.7
Pr (D = 1|Male) = 0.5,
which means that women are more likely to be treated than men.
The propensity score is sometimes known to the researcher,

sometimes not.

« It is often assumed that e (x) € (0, 1) for all x (“overlap” assumption). *°



Unconfoundedness

In some settings, it is plausible to assume that conditional on the vector
of covariates X, the treatment is independent on the potential outcomes,
that is

(YO, YY) 1L D | X.

This assumption is called unconfoundedness after Rubin (1990). A.k.a.
ignorability, selection on the observables, data missing at random.

This assumption is often more plausible than perfect randomization; and
it has pretty much the same effect: condition on each group x, use the
assumption, and re-integrate over x.

36



An immediate example

Going back to our education decision where treatment=getting a degree.
Assume that X ~ g(p) is now an observed variable measuring ability, say
IQ, and that the potential outcomes are the earnings without and with

the degree

Y= (X) and Y'=f (X).
The treatment (getting a degree) is D, and it is assumed that e(X) € (0,1)
(overlap). Because (Y°,Y") is a deterministic function of D,

(Y°,Y") 1L D|X

i.e., unconfoundedness holds.

37



A more realistic example

Let's go back to our education decision where treatment=getting a
degree. Maintain that X ~ g(u) is an observed variable measuring ability,
say 1Q, and that the potential outcomes are the earnings without and
with the degree are Y° = f° (X) +° and Y' = f' (X) + <" and that the cost of
effort associated with obtaining the degree is ¢ (X) + 7. It is assumed that
e, n, and X are independent.

38



A more realistic example

Let's go back to our education decision where treatment=getting a
degree. Maintain that X ~ g(u) is an observed variable measuring ability,
say 1Q, and that the potential outcomes are the earnings without and
with the degree are Y° = f° (X) +° and Y' = f' (X) + <" and that the cost of
effort associated with obtaining the degree is ¢ (X) + 7. It is assumed that
e, n, and X are independent.

The treatment is chosen if the expected benefit associated with the
degree exceeds the cost, that is

D=1{f (X) - f°(X) > C(X) +n}
and hence, in this model, it is clear that
(Ye,Y) L D|X,

i.e., unconfoundedness holds.
38



Unconfoundedness and the propensity score

« Unconfoundedness implies that

Ty (¥, d|x) = myx (Y|X) moix (d|X)
where Y = (Y°, Y").
« As aresult,
mxvp (X, Y, d) = mxy (X, ¥) mpix (d]x) .
* But mpx (d|x) = e (x) ifd =1,and 7 (d|x) =1— e (x) if d = 0, thus
moix (d|x) =1—e(x) +d(2e(x) —1),
so that:

« mpix (d|x) is a function of e (x) and d only.
« Under unconfoundedness

mxyp (X, ¥, d) = mxy (X,y) (1—e(x) +d(2e(x) —1)).

39



Unconfoundedness and the propensity score (2)

« Under unconfoundedness, we have
(Y°,Y) LD [e(X),
i.e., instead on conditioning on X (which may be large-dimensional),
it is enough to condition on the propensity score. This explain the
fundamental importance of the latter.
* Indeed, under unconfoundedness, mypx (¥, d|X) = myx (Y|X) mox (d|X),
but recall that mpx (d|x) = f(e (x) ,d) is a function of e (x) and of d (in
fact, mpix (d|X) =1 — e (x) +d (2e (x) — 1)). Hence
L Yxepy=e Txo (XY, d) svery=e Txv (X', V) moix (d]X)
TYDle (y7d|e(X) - e) - # {X/ . e(X/) — e} B # {X’ 0 e(x’) = e}
Zx/:e(x’):e XY (Xla Y)
=f(e,d
fle,d) #{x' :e(xX)=e}
= f(e,d) mye (vle (x) = e) , QED. 40




ATE under unconfoundedness (1)

« Under unconfoundedness, we have
E[Y*|D =1,X] = E[Y'|X]
E[Y*|D = 0,X] = E[Y°|X]
* Indeed, fxyp (X, ¥, d) = fx (X) fyx (V|X) foix (d|x), thus
E[YID=1,X] = E[Y'|D =1,X] = E[Y"|X], and similarly for the second

equality.
« As a result, the conditional ATE is obtained by

ATE (x) =E[Y'|X] —E[Y°|X] =E[Y|D=1,X] —E[Y|D=0,X].
« The ATE is obtained by
ATE = E[ATE [X]].

A



ATE under unconfoundedness (2)

« Note that under unconfoundedness, we do not have
ATE = E[Y*|D = 1] — E[Y*|D = o]!!
* Indeed, assume that there are only two values of x: 0 and 1. Then

_E[y1{X=0,D=1}] E[Y*"1{X=0,D=0}]
ATEO) = =5 X—oD=7 = PiX=0D=0

_E[y1{X=1,D=1}] E[Y"1{X=1,D=0}]
ATE() == x=aD=7 ~ PrX=1D=0)

and
ATE = Pr (X = 0) ATE (0) + Pr (X = 1) ATE (1)

 Both quantities will coincide if D 1L X. But one can show that this
implies perfect randomization, i.e. (Y°,Y") 1L D. (This will be left as
an exercise).
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Statistical estimation: discrete case

« How to estimate this in practice under the unconfoundedness
assumption?

« If X is discrete and can take a finite number of values x', ..., xX,
provided the sample is large enough, a natural estimator of ATE (x) is
given by

ATE (X ) o {#l CXj = Xk, d= 1} i:x.:)(zkd:1 g

1
T x=xd=o] 2 Vi

i:x;=xk,d=0
and the average treatment effect is estimated by

= K #l X = o =
ATE = g {{#—i}}ATE (xk)

« If X is continuous, such approach no longer works. 43



Statistical estimation: continuous case

« When X is continuous, the problem gets more complicated and we
will return to it later.

+ One possibility is to have a parametric model (e.g. linear) to
estimate E [Y*|X,D = o] and E[Y*|X,D = 1].
- Hahn (1998) has shown that for any estimator ATE of ATE, we have

vix) o VKX

e X) + o= e (X) + (ATE (X) — ATE)?

var (ATE — ATE) > %E [

where V? (X) = var (¥?|X), and that this bound can be approximately
attained when the sample size n is large.
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Statistical estimation: a first linear model

e Assume
Y° = ao + BLX + €0
Y-I = 041 +54X+€1

where unconfoundness holds: (¢o,¢,) 1L D | X.
« Then
ATE (X) = i — a0 + (B — Bo)' X,
and therefore the average treatment effect is obtained by

ATE = 0y — ao + (B — Bo) E[X] .

 Naive approach; much more on this later.
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“Bad controls” lead to bias

Two infamous cases:

1. Conditioning on a variable that is post-treatment
2. Omitted variables that are correlated with error and treatment

We will formalize these intuitions next week, as we begin thinking about
treatment effects.
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Today



Field experiments: methods and issues

Core takeaways today:

« Estimating treatment effects via regression
« Overview of seminal field experiments
« Begin to think about inference/uncertainty/hypothesis testing



Regression analysis of treatment effect

« One way to estimate the ATE under perfect randomization is by
running a linear regression

Yi =a+fDj+e

and note that if the treatment is random, then D; and ¢; are
independent, so the treatment effect can be estimated by linear
regression as Sors.



Unconfoundedness

« Under unconfoundedness, assume

Yozao‘i‘ﬁ(,)X‘i‘eo

where unconfoundness holds: (so,¢4) 1L D | X.
« Then, recall that

ATE (X) = ay — a0 + (81 — o) X,
and therefore the average treatment effect is obtained by

ATE = a; — ao + (81— Bo) E[X].



« Field experiments vs lab experiments?


https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1729274

« Field experiments vs lab experiments?

« According to Harrison and List (2006), the following six factor are
determinant in a field experiment:

 The pool of subjects

« The information brought to the participants

+ The incentive mechanism (what commodity is used to encourage
participation). Participants paid to participate? (e.g., Chassang et al.)

« The task asked from participants

+ The stakes participants have in the outcome

« The environment


https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1729274

Methods of randomization

« Various types of randomization exist, cf. Duflo, Glennerster and
Kremer (2008).

« Oversubscription. Limited budget: size of treatment group is
determined by available budget.

« Randomized phase-in. Gradual phase-in of the program across eligible
areas. Control group is made of the areas waiting to receive the
treatment.

« Within-group randomization. Some subgroups are provided in each
targeted area, to minimize spatial inequalities. Greater risk of a
spillover problem.

« Encouragement design. Instead of randomizing treatment,
announcement of the program, or incentive to participate to the
program, is randomly assigned.



Issues with randomization

« Ethical and political issues with randomization
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Issues with randomization

« Ethical and political issues with randomization: it may not be
ethically or politically acceptable to purposely exclude a group from
a treatment. Should treatment be randomly provided or provided to
those who need it most?

« Internal vs. External validity: targeted sample should be
representative so that conclusions of a small-scale experiment may
not hold on a larger scale. Internal validity: proper randomization;
absence of confounding factors.

« Imperfect compliance: some individuals who are assigned the
treatment may not comply. Sometimes, control individuals may get
the treatment. A solution is to redefine “treatment” as “probability of
being exposed to treatment” - “intention-to-treat”.
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Issues with randomization (continued)

« Spillovers. Control and treatment groups should be located
sufficiently far apart.

- “Hawthorne effect, ” “John Henry effect”: people modify their
behaviour if they know they are part of an experiment, or more
generally when they are aware of being observed. This is a threat to
external validity.



Some famous field experiments

« We will review three famous field experiments:

« Effect of class size reduction on academic performance: the STAR
experiment in Tenessee. Krueger (1999).
« Why do people give to charities? DellaVigna, List and Malmendier

(2012).
« What is the effect of incentives on teachers’ absenteism? Duflo,

Hannaand Ryan (2012).

10



The STAR experiment: class size reduction

« The question is the causal effect of class size reduction (CSR) on
students’ academic performances. Two large-scale experiments on
the topic: STAR in Tennessee and SAGE in Wisconsin. Focus on the
former.

 The STAR experiment: Student/Teacher Assignment Ratio
experiment, run in Tennessee in the 1980s.

* 11,600 students and teachers randomly assigned to three groups by
class sizes:

+ “small” (13 to 17 students/ teacher),
+ “regular” (22 to 25 students/teacher with no aid)
+ “regular+aid” (22 to 25 students/teacher with full-time teacher aid)

- Randomization was performed within schools, and once initially
assigned, students remained assigned to their group for four years.

1"



The regression model

+ Krueger (1999) regresses:
Yies = Bo + B1SMALLs + ﬁzREG/Acs + B3Xics + s + €ics

where Y. is the average percentile score on the SAT test of student i
in class c at school s, SMALLs is a dummy variable of whether the
student was assigned to a small class, REG/A.s is a dummy variable of
whether the student was assigned to a “regular+aid” class, and X is
a vector of student and teacher covariates like gender, etc. Because
randomization was done within schools, as is a school fixed effect.

12



Krueger’s study: results

« The following figure shows the density of the test score distributions
of students (treated/control) in K-3 grades:

o015k Kindergarten 015 1st Grade

/’ - gegl;’\a:

of/, 5 ,
[] 100

Stanford Achievement Test Percentile

~--- Regular
o
I

L
0 50 100
Stanford Achievement Test Percentile

05k 2nd Grade 015 3rd Grade

L . L by
[ 50 100 ]

L L L
50 100
Stanford Achievement Test Percentile

Stanford Achievement Test Percentile

Figure 1
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Krueger's study: results (kindergarten)

OLS: actual class size

Explanatory
variable o @ 3) 4)

A. Kindergarten

Small class 4.82 5.37 5.36 5.37
(2.19) (1.26) (1.21) (1.19)

Regular/aide class .12 .29 .53 31
(2 23) (1 13) (1 09) (1.07)

White/Asian (1 = 8.35 8.44
yes (1.35) (1.36)
Girl (1 = yes) — — 4.48 4.39
(.63) (.63)
Free lunch (1 = — — —13.15 —13.07
yes) .77) ( 77)
White teacher — — —
(2 10)
Teacher experience — — — .26
(.10)
Master’s degree - — — —-.51
(1.06)
School fixed effects No  Yes Yes Yes
R? .01 .25 .31 .31

Figure 2: 1%



Krueger's study: results (first grade)

B. First grade

Small class 8.57 8.43 7.91 7.40
(197 (1.21) (1.17) (1.18)
Regular/aide class 3.44 2.22 2.23 1.78
(2.05) (1.00) (0.98) (0.98)

White/Asian (1 = — — 6.97 6.97
yes) (1.18) (1.19)

Girl (1 = yes) — — 3.80 3.85
(.56) (.56)

Free lunch (1 = — — —13.49 —13.61
yes) (.87 (.87
White teacher — — — —4.28
(1.96)

Male teacher — — — 11.82
(3.33)

Teacher experience —  — — .05
(0.06)

Master’s degree — — — .48
(1.07)

School fixed effects No  Yes Yes Yes
R? 02 24 .30 .30

Figure 3: 15



« Attrition is the fact that some students may leave the sample (e.g.,
move to a private school, or to a different school district).

16
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move to a private school, or to a different school district).

 Problem: students initially assigned to regular classes and who have
higher scores may be more likely to leave the sample, as they have
more outside options. Hence attrition may be selective, which will
bias the measurement of the treatment effect.
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« Attrition is the fact that some students may leave the sample (e.g.,
move to a private school, or to a different school district).

 Problem: students initially assigned to regular classes and who have
higher scores may be more likely to leave the sample, as they have
more outside options. Hence attrition may be selective, which will
bias the measurement of the treatment effect.

« One way to deal with attrition is to impute the scores of the students
who leave the sample. This can be done by prediction based on past
score results.

16



Effects of attrition

TABLE VI
EXPLORATION OF EFFECT OF ATTRITION DEPENDENT VARIABLE: AVERAGE
PERCENTILE SCORE ON SAT

Actual and imputed
Actual test data test data
Coefficient Coefficient
on small Sample on small Sample
Grade class dum. size class dum. size
K 5.32 5900 5.32 5900
(.76) (.76)
1 6.95 6632 6.30 8328
(.74) (.68)
2 5.59 6282 5.64 9773
(.76) (.65)
3 5.58 6339 5.49 10919
(.79) (.63)

Estimates of reduced-form models are presented. Each regression includes the following explanatory
variables: a dummy variable indicatin g initial assignment to a small class; a dummy variable indicating initial
assignment to a regular/aide class, unrestricted school effects; a dummy variable for student gender; and a
dummy variable for student race. The reported coefficient on small class dummy is relative to regular classes.
Standard errors are in parentheses.

Figure 4: 17



Charitable giving

« 90% of Americans give money to charities every year.
« Why do they give? several theories:

- because they care about a specific cause: “warm glow” of giving,
altruistic motives. This is efficient from a welfare point of view as both
utilities of giver and receiver are enhanced (Becker 1974; Andreoni

1989, 1990).
+ because they feel social pressure for it (Akerlof and Kranton 2000).

Ambiguous welfare effect: increase receiver’s utility but may decrease
giver’s.

« How would you distinguish experimentally between these two
motives?

18



DellaVigna et al’s field experiment

The field experiment was a door-to-door fundraising drive in the Chicago
area for two charities: a local children’s hospital, (La Rabida, well-known

premier hospital for children in the area), and an out-of-state charity
(ECU, unknown to most participants).

19



The experimental design

« 7,668 households were approached between April and October 2008.
The experimental design is carried in order to allow to either seek or
avoid the solicitor. Hence, households are randomized into three
groups:

- First treatment: notice. A flyer on the door gives one day prior notice
about the one-hour time interval

« Second treatment: notice with opt-out. The flyer includes a box to be
checked if the household does not want to be disturbed.

+ Baseline treatment: solicitors arrive without prior notice.

« Outcome is measured both in terms of % of households who open
the door and % of households who give.

« How does this experimental design address the giving motives
questions?

20



The flyer

TESTING FOR ALTRUISM AND SOCIAL PRESSURE. 17

pl=britien

GHiEiES

O e
[t
s

Fiours 1

Flyer Samples.

for the 2008 survey treatments (bottom row). The top-eft fiyer is or the opt.out
roiment, whi o g e fr e renment The o row ers
are both o
e ora $10 payment.

Figure 5:
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DellaVigna et al’s field experiment

« Determining the motives of charitable giving:

+ If the main motive is altruism, the notice should increase % who are
home, % who open the door, and % who give.

« If the main motive is social pressure, the notice should decrease %
who open the door, and % who give.

« After the solicitor has collected a gift (or not), s/he asks the
individual if s/he wants to complete a survey on charitable giving,
and announces a duration randomized into 5 or 10 minutes, and
payment for completing the survey randomized into $0, $5, or $10.

22



Experimental treatments

a
Fundraising Treatmants Tkl
Bascive Fiver
Fundmsieg  Fundraing
e e OMite Mo {0Mina
Survey Survey Survey
Funcraising Fundraising
Frer Fer
LaRi =& s 0 B
Fundraising Fundraising
FyerwOpLOU  Firwih O Out
Laka oo 510
b
Survey
Baseline Fiyer Optout
S-Minute 5-Minute 10-Minute: 5-Minute
Survey Survey Survey Survey
50 5 50 50 0 55
5
s10
FiGURE 111
Experimental Treatments (Top) 2008, (Bottom) 2009
Summary of the Tun in the door-to-door field experi in 2008

(charity and survey) and run in 2009. La Rabida and ECU are the names of the
two charities for which the funds were raised.

Figure 6:
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Regression: design

- Regress the outcome variables (door opening and giving) on the
following regressors:

 Notice

 Notice+opt out

« Dummy for charity = ECU (less well-known hospital)

- Fixed effects for solicitor, date-location, hour, house quality

24



Regression: results

Specification: OLS regressions
Indicator for Indicator for Indicator for giving Amount given
Dep. var.: answering the door giving Small amount (< $10) Large amount (> $10) (including $0)
1) (2) (3) (4) (5) (6) [ (8) 9) (10)
Flyer treatment —0.0387 —0.0011 —0.0033 0.0022 —0.1459
(0.0137)*** (0.0062) (0.0052) (0.0035) (0.1357)

Flyer with opt-out —0.0967 —0.0195 —0.0193 —0.0002 —0.3041

treatment (0.0194)*** (0.0084)** (0.0081)** (0.0051) (0.1653)"
Indicator ECU 0.01 0.0041 —0.0249 —0.0263 —0.0127 —0.0107 —0.0123 —0.0155 —0.7611 —0.9767

charity (0.0143) (0.0234) (0.0049)***  (0.0085)***  (0.0053)**  (0.0085) (0.0032)***  (0.0052)***  (0.1368)*** (0.2014)***
Flyer treatment —0.0365 0.0006 —0.0045 0.0051 0.1154

*ECU charity (0.0313) (0.0094) (0.0076) (0.0045) (0.1240)
Flyer with opt-out —0.089 —0.0183 —0.0222 0.0039 —0.0907

*ECU charity (0.0271)*** (0.0100)* (0.0098)** (0.0058) (0.1268)
Flyer treatment —0.0396 —0.0019 —0.0028 0.0009 —0.2545

* La Rabida charity (0.0144)*** (0.0078) (0.0066) (0.0046) (0.1841)
Flyer with opt-out —0.106 —0.0202 —0.0161 —0.0042 —0.4573

* La Rabida charity (0.0319)*** (0.0132) (0.0128) (0.0087) (0.2885)
Omitted treatment No-flyer, La Rabida No-flyer, La Rabida No-flyer, La Rabida No-flyer, La Rabida
Mean of dep. var. for

omitted treatment 0.413 0.0717 0.0414 0.0414 0.0215 0.0215 1.161 1.161
Fixed effects for X X X X X X X X

solicitor, date-

location, hour,

and area rating
N N =17668 N =17668 N =17668 N = 7668 N =7668 N =17668 N =17668 N =17668 N = 17668 N =17668

Notes. Estimates for a linear probability model, with standard errors clustered by
treatment for the La Rabida chanty The regressions mclude fixed effects for the solicitor, for the date- town combination, for the hour of day, and for a subjective rating of home values

in the block. * si

at 10%; ** signi at 5%;

at 1%.

licitor-date, in h

Figure 7:

s the baseline no-flyer fund-raising
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Regression: results (continued)
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The effect of incentives on teachers absenteesim

- Teacher absenteeism is a major issue in Indian primary school.
Duflo, Hanna and Ryan (2012) run a field experiment to study the
effect of incentives to reduce it.

« Study carried in 2003 in the rural villages of Rajasthan, India, where
absenteeism rate before the start of the program was 53%.

- In 57 randomly selected, teachers had to be photographed in their
classroom with a time stamp. Their salary was a function of
attendance:

« Rs. 500 if attended fewer than 10 days in a month, and
« Rs. 50 for any additional day attended that month.

« In the 56 comparison schools, teachers were paid a fixed rate for the
month (Rs. 1,000).

27



Impact on teacher’s performances

TABLE 1—BASELINE DaTA

Treatment Control Difference
(1) 2 (©))
Panel A. Teacher attendance
School open 0.66 0.64 0.02
(0.11)
41 39 80
Panel B. Student participation (random check)
Number of students present 17.71 15.92 1.78
(231)
27 25
Panel C. Teacher qualifications
Teacher test scores 34.99 33.54 1.44
(2.02)
53 54 107
Panel D. Teacher performance measures (random check)
Percentage of children sitting within classroom 0.83 0.84 0.00
(0.09)
27 25 52
Percent of teachers interacting with students 0.78 0.72 0.06
(0.12)
27 25 52
Blackboards utilized 0.85 0.89 —0.04
(0.11)
20 19 39
F-stat (1.110) 121
p-value (027)
Panel E. Baseline test scores
Took written exam 0.17 0.19 —0.02
(0.04)
1,136 1,094 2,230
Total score on oral exam —0.08 0.00 —0.08
(0.07)
940 888 1,828
Total score on written exam 0.16 0.00 0.16
(0.19)
196 206 402

. 28
Figure 9:



Impact on fractions of schools open

100
Treatment
7
80
60
Control
40
20
Mid-test Post-test
0

Aug 03 Nov03 Feb04 May04 Aug04 Nov04 Feb05 May05 Aug05 Nov05 Feb06
Month

FIGURE 1. PERCENTAGE OF SCHOOLS OPEN DURING RANDOM CHECKS

Notes: The program began in September 2003. August only includes the 80 schools checked before announcement
of program. September includes all random checks between August 25 through the end of September. Child learn-
ing levels were assessed in a mid-test (April 2004) and a post-test (November 2004). After the post-test, the “offi-
cial” evaluation period ended. Random checks continued in both the treatment and control schools.

Figure 10:
29



Impact on teacher attendance

TABLE 2—TEACHER ATTENDANCE

September 2003-February 2006 Difference between treatment and control schools
Treatment Control Diff Until mid-test ~ Mid- to post-test After post-test
(1 (2 3) 4) ©) (6)
Panel A. All teachers
0.79 0.58 0.21 0.20 0.17 0.23
(0.03) (0.04) (0.04) (0.04)
1,575 1,496 3,071 882 660 1,529
Panel B. Teachers with above median test scores
0.78 0.63 0.15 0.15 0.15 0.14
(0.04) (0.05) (0.05) (0.06)
843 702 1,545 423 327 795
Panel C. Teachers with below median test scores
0.78 0.53 0.24 0.21 0.14 0.32
(0.04) (0.05) (0.06) (0.06)
625 757 1,382 412 300 670

Notes: Child learning levels were assessed in a mid-test (April 2004) and a post-test (November 2004). After the
post-test, the “official” evaluation period was ended. Random checks continued in both the treatment and control

schools. Standard errors are clustered by school. Panels B and C only include the 109 schools where teacher tests
were available.

Figure 11: 30



Effect of the nonlinearity of the wage structure

0.6

0.4+

Attendance rate

0.2+ e

T T T T

0 5 10
Days

FiGURE 3. RDD REPRESENTATION OF TEACHER ATTENDANCE AT THE START AND END OF THE MONTH
Notes: The top lines represent the months in which the teacher is in the money, while the bottom lines represent the

months in which the teacher is not in the money. The estimation includes a third-order polynomial of days on the
left and right side of the change of month.

Figure 12:
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Let’s begin to think about
inference

32



Parametric vs. non-parametric (Fisherian) tests

« Typically we appeal to CLT in large-sample settings based off of
theory about the sampling distribution of sample means (and

differences in means). This justifies the t-distribution via asymptotic
normality.

+ But what if we have small sample sizes? What if we don’t like
assumptions of normality?

33



The sharp null

The sharp null implies:
di=0Vi

The typical frequentist framework testing framework implies that the
parameter of interest is equal to some number (often zero, e.g., § = 0).

In the Fisherian approach, we may want to test something similar:

5;=5=0Vi

34



Steps for testing the sharp null hypothesis

1. Calculate a sample statistic (e.g., dare) Using the treatment
assignment vector.

2. Consider all possible treatment assignment vectors (using
knowledge of the assignment mechanism).

3. For each possible treatment permutation, recalculate the sample
statistic as if that had been the true assignment vector. Store each
permuted sample statistic.

4. The “exact” p-value is obtained by comparing the sample statistic
against the distribution from step 3—i.e., what share of the permuted

sample statistics were at least as large as the observed statistic?’
"Note: if too many permutation vectors exist, you can perform randomization inference
by randomly sampling from the set of hypothetical treatment vectors. Then, the p-value
is derived by comparing againt the randomization distribution.
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Field experiments: methods and issues (2)

Core takeaways today:

« Varieties of experimental designs

« More on permutation/randomization inference
« Neyman confidence intervals

« Bayesian approaches for inference

« Example 1: Resume experiment

« Example 2: GOTV experiment

« Beginning to think about non-compliance



Continuing with randomized experiments

- Business experiment; A/B testing; split testing; bucket testing: same
idea with various contexts/names.

« Principle: separate between control/treatment groups and monitor
the response.

- Basic recipes:

- avoid spillovers (geographic/online/across-product substitution)

« setup a feedback mechanism

« Often simple is better (— avoid comparison across too many groups)

+ beware of unanticipated difficulties (e.g., price discrimination; legal
issues; consumer reaction; the potential for unforeseen harms)

- Anticipate that things will go wrong.


https://www.nytimes.com/2014/10/29/upshot/professors-research-project-stirs-political-outrage-in-montana.html
https://www.nytimes.com/2014/10/29/upshot/professors-research-project-stirs-political-outrage-in-montana.html
https://press.princeton.edu/titles/10872.html

A/B tests and business experiments: methodology

As in IR, there are 4 main types of randomized experiments.

« Bernoulli trials.

« Completely randomized experiments.
- Stratified experiments.

« Paired randomized experiments.



Bernoulli trials

+ Recall the conditional probability of being in the treatment group is
given by the propensity score e (x), where x is the vector of
covariates. In a Bernoulli trial, n units are assigned in a i.i.d. manner

to the control/treatment groups.
« Letting D € {0,1}", one has in a Bernoulli trial

Pr (DIX. ¥°,Y") = [Je (06)® (1 — e () ")
i=1
+ When the treatment probability is uniform e (x) = g, one has
Pr(D|X,Y°,Y) =q" (1—q)™

where n, = Y1’ D;and no = n — n,.



Completely randomized experiments

* In a completely randomized experiment, the size of the treatment
group n, is fixed, and the n, treated individuals are drawn at random

without replacement.
« As a result,

Pr(D\x,v",W):<:1>_’:<m>_1

if > . D; = n,, n, >0, and Pr (D|X, Y°,Y") = 0, otherwise.



Stratified experiments

- In stratified experiments, the population is divided into strata or
blocks of similar covariates. E.g., male and female; number of
children; earnings brackets.

+ Within each block j € J, a completely randomized experiment is
performed. Let B; € J be the index of the block of unit i.

« Each block j has size n (j) = no (j) + n, (j) and

Pr (DIX, ¥°, V') — H<N(j.>>_1 if S D= n,(j) Vj e

e \M ) i-Bi—j

= 0 else.



Pairwise experiments

« Pairwise experiments are stratified experiments where the blocks are
of size two. In each block one unit (drawn at random) is treated, and
the other one is not.

* In this case n is even and J = {1, ..., n/2}. Each unit has probability
1/2 of being assigned to the treatment group.

« As a result,

Pr(DIX,Y°,Y") =27"2if Y Di=1Vj=1,..,n/2

i:Bj=j

= 0 else.



Big picture takeaway

- Details of the assignment mechanism all differently influence

Pr (D|X, Y°, Y").
« As a result, different experimental designs have different variance
properties and demand different methods for analysis.

10



Sample uncertainty

1"



Tests for completely randomized experiments

« Assume a fundraising email has been sent to n = 10, 000 recipients
by a political campaign. It comes in two sorts. In the control group
(of size n, = 6,000), no picture is included. In the treatment group
(size n, = 4,000), the picture of the candidate is given. The message
asks for a donation of $500, $1,000, or $2,000 dollars.

12



Tests for completely randomized experiments

« Assume a fundraising email has been sent to n = 10, 000 recipients
by a political campaign. It comes in two sorts. In the control group
(of size n, = 6,000), no picture is included. In the treatment group
(size n, = 4,000), the picture of the candidate is given. The message
asks for a donation of $500, $1,000, or $2,000 dollars.

« The question is whether displaying a picture had an effect on
donations. The rate of response is as follows:

donation control treatment
$o 2,400 1,200

$ 500 1800 1,200
$1,000 1200 1,000
$2,000 600 600

12



Tests for completely randomized experiments

- Fisher’s sharp null hypothesis:
Ho:Y? =Y; = g =o0foralli=1,....N.

« In order to test this hypothesis, we need a test statistic: a function of
D, Y* and X the distribution of which we can characterize under the
null hypothesis. This distribution will tell us “how unlikely” is our
observation.

13



Tests for completely randomized experiments

- Fisher’s sharp null hypothesis:
Ho:Y? =Y; = g =o0foralli=1,....N.

« In order to test this hypothesis, we need a test statistic: a function of
D, Y* and X the distribution of which we can characterize under the
null hypothesis. This distribution will tell us “how unlikely” is our
observation.

« A natural test statistic is the absolute value of the estimated ATE, i.e.,

i Yip=oYi

No N

T% = |E[y*|D=1]-E[y'|D=0]| = ‘Z":‘Xf
;

and here, E[Y*|D = 1] = 700, while E [Y*|D = 1] = 550.

13



Tests for completely randomized experiments (continued)

 Another test statistic is the classical t-statistic, given by
Tiostat — i/ /s2 /ng + s2/n,

where s3 = Sip_q (Y; —E[V*[D=d])"/ (ng - 1).

14



Fisher’s p-values in our example

« Can we attribute the difference between 550 and 700 to statistical
uncertainty alone? in order to do so, one should look at the
distribution of T9% under H,.

15



Fisher’s p-values in our example (continued)

« In order to do this, consider all the draws of D such that the size of
the treatment group is 4,000, and the size of the control group is
6,000. There are (?ggg’) such draws. For each realization D, let us
compute the value of T%7 that one would get if using D instead of the
actual treatment. Assuming Y? = Y; = Y;, we would get

cair _ | Sy YiD; S (1-by) _

i=1 -
Z’101000 D Z:172,1000 (1 _ Di)
» We could simulate the distribution of ¥ and compare with the
actual value of T%, The p-value of the test is given by Pr (Tdiff > Tdiff).

If the p-value is higher than the confidence level ¢, then the
observed value of T%7 is unusual, and therefore H, will be rejected.

16



Repeated sampling: Neyman estimator

Recall that the ATE is estimated under perfect randomization by the
naive estimator, namely:

YiYiDi  ¥iYP(1-Dy)
n, No
_XiYiDi  XiY?(1-Dj)

> Dj >i(1— D)

ATE =

where n = ny + n,. This is sometimes called the Neyman estimator.

17



Repeated sampling: Neyman estimator (2)

- Conditional on potential outcomes as given, when if D drawn
uniformly from the set {0, 1}” such that ¥; D; = n,, the variance of
the Neyman estimator can be shown to be

U —var (ATE) - (’V . n1a,2\,(Y')+Wg§(Y°)+2aN(W,Y°))

where N > 4 is the size of the unobserved population, n is the size of
the experimental sample, n, > 2 is the size of those randomly
assigned to treatment, and n — n, > 2 units are randomly assinged to
control. Here, az(Yd) - var(Yd).

« Neyman showed that as N — oo, with n and n, fixed,
var(A/T\I:'> = Lo3 (V) + o3 (Y°).

n—nq

18



Repeated sampling: Neyman estimator (3)

When n = N, the sampling variation of the Neyman estimator reduces to:

_— 1 (n—n, , n, o,
v, :var(ATE,,> o ( YY) + o) +2crn(Y',Y°))

Neyman proposed a conservative estimator of the variance given

o (65<v1>+&s<v°>)

n—1\ n, n—n,

19



Repeated sampling: bounds on the variance

« In the previous expression, o2(Y?) can be easily estimated
empirically for d € {0,1} by

s=—— % (v-V)

Mg =15 =4

+ However, o2(Y", Y°) cannot be estimated empirically because one
never simultaneously observe Y; and Y?. Note that when the
treatment effect Y] — Y? is constant, then o2 (Y", Y°). This is an upper
bound on the variance, and therefore is useful for computing
“conservative” confidence intervals. Therefore

So , St

var (/TT\E) my PR — 28 o S
no = n

20



Neyman confidence intervals

Why is this conservative?’ One can show:

]E(\?Neymﬂn - v,,> - [ag(m + 02(Y0) — 20, (Y', Yo)] >0

n—1

Hence, a conservative 90% confidence interval for the ATE is

[A/ﬁ:- — 1.645/ \A/Neymanjﬁﬁz- + 1'645\/\7Neyman] .

1See Aronow et al. (2014) for more detail on this derivation.

21


https://projecteuclid.org/euclid.aos/1400592645

Linear regression and the Neyman estimator (1)

In the setting of completely a randomized experiment, recall the linear
regression specification

Y;-k Za—I—TD,'—f—ﬁ’X,'—i-&,'
and consider the sample OLS estimates (&, %,B), given by

min E {(Yf —a—71D; — B'X,-)z} ;

a77—76

with (a*, 7*, %) their population analog, where the sample average E is
replaced by the population expectation E (i.e. N — +00).

22



Linear regression and the Neyman estimator (2)

« Then 7* = ATE=E[Y] — ¥?], and
VN (7 = 7) = N (0, )
where
E [(D; — E[D}))? (Y — o* — 7°D; — B*X)’]

LS
1= E[D]*E[1— D]

- Note that we recover VN&Yman yia OLS when there are no covariates.

23



How “conservative” is it?

+ Short answer: can be very
- next HW will have you inspect this fact further

24



Imputation to deal with inference

« Consider? the following 6 observations, taken from the LaLonde

dataset:
iy i biY
1 0 ? 0O O
2 7 99 1 99
3 124 7 0 12.4
4L ? 3.6 1 3.6
5 0 ? O O
6 ? 24.9 1 24.9

« The naive estimator yields 0,4 = 8.67.
2Cf IR, Ch. 8.4.

25



Model-based imputation: Bayesian approach

« Assume that we have a model for the potential outcomes. If 4 is the
parameter, assumed to be drawn from a prior p (6), (Y°,Y") is the
vector of potential outcomes, and if D is the vector of treatments,
and f(Y°,Y"|0) is assumed to be known.

« Further, because we are under complete randomization, one has
F(Y°,Y',D|0) = f(Y°,Y'0) f(D),

which will be our basis for doing Bayesian inference. Note that in
observational studies, this independence would not hold.

- We'll denote Y- for missing data. Note that Y; =Y, > V.

26



Bayesian inference for ATE

Step 1: Compute f(Y~|Y*,D,0).

« Step 2: Compute f(6|Y*, D).

Step 3: Compute f(Y~|Y*, D).

Step 4: If the parameter of interestis 7 = 7 (Y°,Y', D) = 7 (Y, Y*, D),
then its distribution can be inferred from the distribution f(Y~|Y*, D).

27



Inference in our example

100 O

* A that (Y°,Y") ~ o
ssume that (Y°, Y") N((u,u),(o -

)) where 6 = (u°, u').

« The prior distribution for 6 is A/ ((0,0)7 (107200 10 200)).

« The assignment mechanism is

Pr (D = d|Y,0) = (&)ﬂ {id,- - N1}

28



An example: step 1

« Compute f(Y~|Y*,D,0).
« Letting Y~ be the missing data, we have

Y, w' 64
Y, 1° 100 o
Y; ' 64
Y*7 D) 07 ! ~ N )
Y, | Aot 1° 100
Yo ' o] 64

i 0 100

=

29



An example: step 2

+ Next, we can compute f(0|Y*, D).

* Here,
12 (e ) *
where
E[y* No.10,
E [4Y*,D] = (IFE[Y |D:°]%> nd
E[Y*ID = 1] 360005765
V [4[Y*, D] = (@ g )
N+/64+1/10,000
+ Hence

MO * 4.1 582 0
<M1>IY,D N((12'8),(0 4.62>).

30



An example: step 3

« By combining f(0|Y*,D) and f (Y~ |Y*,D, ), we find f(Y~|Y*, D). Here:

Y, 12.8 85.3 0) 21.3 0] 21.3 (0]

YS 41 0O 1332 O 33.2 (0) 33.2

Ys 12.8 21. (0] 85. o 21. 0]
v b |23 5.3 3

i 41 0] 33.2 O 1332 O 33.2
Yg 12.8 21.3 0 21.3 0] 85.3 (0

Ye 4.1 0] 33.2 (0] 33.2 O 133.2

31



An example: step 4

 The treatment effect is measured by

1 N N

S - = o> -2D) Y+ ZzD )Y;

i=1 i=1

whose distribution can be provided using f(Y~|Y*, D).

e One has

N
SN =¥ ~ N (87,52).

i=1

32



Examples from real experiments

83



Case 1: Labor Market Discrimination

« Taken from Bertrand M. and Mullainathan S. (2004). “Are Emily and
Greg More Employable Than Lakisha and Jamal? A Field Experiment
on Labor Market Discrimination” American Economic Review.

34



Case 1: Labor Market Discrimination

« Taken from Bertrand M. and Mullainathan S. (2004). “Are Emily and
Greg More Employable Than Lakisha and Jamal? A Field Experiment
on Labor Market Discrimination” American Economic Review.

- Abstract: “We study race in the labor market by sending fictitious
resumes to help-wanted ads in Boston and Chicago newspapers. To
manipulate perceived race, resumes are randomly assigned
African-American- or White-sounding names. White names receive
50 percent more callbacks for interviews. Callbacks are also more
responsive to resume quality for White names than for
African-American ones. The racial gap is uniform across occupation,
industry, and employer size. We also find little evidence that
employers are inferring social class from the names. Differential
treatment by race still appears to still be prominent in the U.S. labor
market.” 34



Experimental design: resume experiment

« Field experiment: CV sent in response to help-wanted ads in Boston
and Chicago newspapers. Sample size is 1,300.

« Randomize over race perception: White-sounding names (e.g., Emily
Walsh or Greg Baker) are assigned randomly to half of the sample,
and African-American-sounding names (e.g., Lakisha Washington or
Jamal Jones) to the other half.

« Resume quality is also experimentally varied in order to understand
how race perception affects the effects of application’s other
characteristics.

35



There is a literature about estimating the causal effects of seemingly
“immutable characteristics.”

Why is is race an interesting causal variable?

3See, for example, Greiner and Rubin (2011) and Sen and Wasow (2016) for more on
these subjects.
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Results of resume experiment

+ Applicants with White names: 10 CVs for a callback. With
African-American names: 15CVs for a callback.

« The effect of a higher-quality resume on callback rate is smaller for
African-American names. According to the authors: “While one may
have expected improved credentials to alleviate employers’ fear that
African-American applicants are deficient in some unobservable
skills, this is not the case in our data.”

37



Callbacks rates by racial soundingness of names

TaBLE 1—MEAN CALLBACK RATES BY RACIAL SOUNDINGNESS OF NAMES

Percent callback Percent callback for Percent difference
for White names African-American names Ratio (p-value)
Sample:
All sent resumes 9.65 6.45 1.50 3.20
[2.,435] [2.,435] (0.0000)
Chicago 8.06 5.40 1.49 2.66
[1.352] [1.352] (0.0057)
Boston 11.63 7.76 1.50 4.05
[1,083] [1,083] (0.0023)
Females 9.89 6.63 1.49 3.26
[1,860] [1,886] (0.0003)
Females in administrative jobs 10.46 6.55 1.60 391
[1,358] [1,359] (0.0003)
Females in sales jobs 8.37 6.83 1.22 1.54
[502] [527] (0.3523)
Males 8.87 5.83 1.52 3.04
[575] [549] (0.0513)

Notes: The table reports, for the entire sample and different subsamples of sent resumes, the callback rates for applicants with
a White-sounding name (column 1) an an African-American-sounding name (column 2), as well as the ratio (column 3) and
difference (column 4) of these callback rates. In brackets in each cell is the number of resumes sent in that cell. Column 4
also reports the p-value for a test of proportion testing the null hypothesis that the callback rates are equal across racial groups.

Figure 1 38



Callbacks rates by racial soundingness and resume quality

TABLE 4—AVERAGE CALLBACK RATES By RaciAL SOUNDINGNESS OF NAMES AND RESUME QUALITY

Panel A: Subjective Measure of Quality
(Percent Callback)

Low High Ratio Difference (p-value)
White names 8.50 10.79 127 229
[1.212] [1.223] (0.0557)
African-American names 6.19 6.70 1.08 0.51
[1.212] [1.223] (0.6084)

Panel B: Predicted Measure of Quality
(Percent Callback)

Low High Ratio Difference (p- value)
White names 7.18 13.60 1.89 .42

[822] [816] (0.0000)
African-American names 5.37 8.60 1.60 323

[819] [814] (0.0104)

Notes: Panel A reports the mean callback percents for applicant with a White name (row 1) and African-American name (tow 2)
depending on whether the resume was subjectively qualified as a lower quality or higher quality. In brackets is the number of
resumes sent for each race/quality group. The last column reports the p-value of a test of proportion testing the null hypothesis that
the callback rates are equal across quality groups within each racial group. For Panel B, we use a third of the sample to estimate
a probit regression of the callback dummy on the set of resume characteristics as displayed in Table 3. We further control for a sex
dummy, a city dummy, six occupation dummies, and a vector of dummy variables for job requirements as listed in the employment
ad (see Section III, subsection D, for details). We then use the estimated coefficients on the set of resume characteristics to estimate
a predicted callback for the remaining resumes (two-thirds of the sample). We call “high-quality” resumes the resumes that rank
above the median predicted callback and “low-quality” resumes the resumes that rank below the median predicted callback. In
brackets is the number of resumes sent for each race/quality group. The last column reports the p-value of a test of proportion testing
the null hypothesis that the callback percents are equal across quality groups within each racial group.

Figure 2: 39



Effect of resume characteristics on likelihood of callback

Dependent Variable: Callback Dummy

Sample: All resumes ‘White names African-American names
Years of experience (*10) 0.07 0.13 0.02
(0.03) (0.04) (0.03)
Years of experience” (*100) —0.02 —0.04 —0.00
(0.01) (0.01) (0.01)
Volunteering? (Y = 1) —0.01 —0.01 0.01
(0.01) (0.01) (0.01)
Military experience? (Y = 1) —0.00 0.02 —0.01
(0.01) (0.03) (0.02)
E-mail? (Y = 1) 0.02 0.03 —0.00
(0.01) (0.01) (0.01)
Employment holes? (Y = 1) 0.02 0.03 0.01
0.01) 0.02) 0.01)
Work in school? (Y = 1) 0.01 0.02 —0.00
0.01) 0.01) 0.01)
Honors? (Y = 1) 0.05 0.06 0.03
0.02) 0.03) 0.02)
Computer skills? (Y = 1) —0.02 —0.04 —0.00
(0.01) 0.02) 0.01)
Special skills? (Y = 1) 0.05 0.06 0.04
0.01) 0.02) 0.01)
Ho: Resume characteristics effects are all 5450 57.59 23.85
zero (p-value) (0.0000) (0.0000) (0.0080)
Standard deviation of predicted callback 0.047 0.062 0.037
Sample size 4,870 2435 2.435

Figure 3: 40



Case 2: GOTV experiment

« Taken from Gerber and Green (2000). “The Effects of Canvassing,
Telephone Calls, and Direct Mail on Voter Turnout: A Field
Experiment”, American Political Science Review.

A



Case 2: GOTV experiment

« Taken from Gerber and Green (2000). “The Effects of Canvassing,
Telephone Calls, and Direct Mail on Voter Turnout: A Field
Experiment”, American Political Science Review.

« Abstract: We report the results of a randomized fieldexperiment
involving approximately 30,000 registered voters in New Haven,
Connecticut. Nonpartisan get-out-the-vote messages were conveyed
through personal canvassing, direct mail, and telephone calls shortly
before the November 1998 election. A variety of substantive
messages were used. Voter turnout was increased substantially by
personal canvassing, slightly by direct mail, and not at all by
telephone calls. These findings support our hypothesis that the
long-term retrenchment in voter turnout is partly attributable to the
decline in face-to-face political mobilization.

A



Experimental design: GOTV experiment

* n ~ 30,000 individuals in New Haven, CT.
« Randomly assign households into different treatments: mail,
individual contact, phone call.

- Some individuals were assigned to multiple treatments
simultaneously. We will ignore these for now, but this can change
the analysis. E.g., Blackwell (2017).

« Within each treatment arm, individuals assigned different messages
(e.g., civic duty, neighborhood solidarity, close election), and
different dosages.
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+ For phone calls, we know whether a phone was answered.
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+ For phone calls, we know whether a phone was answered.
- For in-person canvassing, we know whether a door was answered.
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+ For phone calls, we know whether a phone was answered.
- For in-person canvassing, we know whether a door was answered.

« Those that were assigned mailers have no measures of compliance
(i.e., we don’t know if they did/didn’t read).
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+ For phone calls, we know whether a phone was answered.
- For in-person canvassing, we know whether a door was answered.

« Those that were assigned mailers have no measures of compliance
(i.e., we don’t know if they did/didn’t read).

Moreover, do we think compliance with respect to treatment is equal
across treatment arms?

43



Intent-to-treat (ITT) effects

« We do, however, observe outcomes for each individual given his/her
treatment assignment.

« ITT: estimated differences in outcomes for those assigned to
treatment versus assigned to control.

+ In the presence of non-compliance, ITT is a biased estimator of the
ATE.

44



We will continue with this example in the next class, as we discuss
intrumental variables in the context of a randomized experiment.
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Today'’s references

References:

« Angrist, J. D., Imbens, G.W., and Rubin, D. B. (1996). “Identification of
causal effects using instrumental variables.” Journal of the American
Statistical Association, 91(434): 444-455.

* IR, Chapters 23, 24, 25
« MW, Chapter 9



Instrumental variables (1)

Core takeaways today:

« Going from ITT to different treatment effects

« How an experiment doesn’t always (straightforwardly) give ATE
« Thinking about bounds of treatment effects in these settings

+ Missing data in the context of non-compliance



Today's framework




Today's framework

Unit |z | D; | VI | Y?

olo|? |V
2 lo|1|V |2
P PR PR VAR

In last class, we motivated a field experiment in which units were
randomly assigned treatment in a GOTV experiment.

Causal effect: compare treatment and control potential outcomes.
« Units in experiments often comply with assignment, but not always
« Human units make compliance with assignment more difficult.



Today's framework

Unit |z | D; | VI | Y?

olo|? |V
2 lo|1|V |2
P PR PR VAR

In last class, we motivated a field experiment in which units were
randomly assigned treatment in a GOTV experiment.

Causal effect: compare treatment and control potential outcomes.
« Units in experiments often comply with assignment, but not always
« Human units make compliance with assignment more difficult.

Goal: Use Instrumental Variables under potential outcomes framework to
identify causal effects.



Notation for compliance

We formalize notation to discuss proper method of analysis.

« Z;: treatment assignment indicator for unit i.

* D;(Z;): treatment received indicator for unit i.

« Z,D: N-dimensional binary vectors of treatment assignments and
treatments received



Notation for compliance

We formalize notation to discuss proper method of analysis.

« Z;: treatment assignment indicator for unit i.

* Dj(Z;): treatment received indicator for unit i.

« Z,D: N-dimensional binary vectors of treatment assignments and
treatments received

We can define individuals by their (often unobservable) compliance
behavior:

« Complier: D;(0) =0, D;j(1) =1

+ Always-taker: D;j(0) = D;(1) =1
+ Never-taker: D;(0) = Dj(1) =0
« Defier: D;(0) =1, Di(1) =0



Notation (continued)

« Z;: treatment assignment indicator for unit i.
* Di(Z;): treatment received indicator for unit i.

* D;i(2),Y;(Z,D): potential outcomes for unit i under treatment
assignment Z; and treatment received. Later assumptions will allow
us to write this in the form Y;(Z;, Di(Z;)).

What should be our estimand of interest?



Causal effectsof ZonDandZon Y

For unit i, the causal effect of

« Zon Dis: D;(1) — D;(0)



Causal effectsof ZonDandZon Y

For unit i, the causal effect of

« Zon Dis: D;(1) — D;(0)
« ZonYis: Yi(Z; = 1,D;(1)) — Yi(Z; = 0, D;(0))



Unit-Level Causal Effects

1,1) — Yj(0,0) for compliers
) —Y;i(0,1) for always-takers
1,0) — Yj(0,0) for never-takers
0

(
Yir.Di(1) = Y(0.Di0)) = { V¢
Yi(1,0) — Y;(0,1) for defiers



Unit-Level Causal Effects

i(1,1) — Yj(0,0) for compliers
i(1,1) — Yj(0,1) for always-takers
Yi(1,0) — Yj(0,0) for never-takers
Yi(1,0) — Y;(0,1) for defiers

Yi(1,D;(1)) — Yi(0,D;j(0)) =

« Always-takers and never-takers have only one treatment received,
regardless of assignment.

- Compliers and defiers take different treatments for different
assignments.

 Hence, to gauge causal effect of treatment received, we look at
compliers and defiers.



An example: Effect of military service on civilian mortality

Taken from Angrist (1990).

« To illustrate assumptions, we use the running example of the effect
of military service (Vietnam War) on civilian mortality.

10


https://www.jstor.org/stable/2006669

An example: Effect of military service on civilian mortality

Taken from Angrist (1990).

« To illustrate assumptions, we use the running example of the effect
of military service (Vietnam War) on civilian mortality.

+ Man with low draft lottery number (Z; = 1) will either serve (D; = 1) or
not in military.

* In world with perfect compliance, D;(Z) = Z; for all i.
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An example: Effect of military service on civilian mortality

Taken from Angrist (1990).

« To illustrate assumptions, we use the running example of the effect
of military service (Vietnam War) on civilian mortality.

+ Man with low draft lottery number (Z; = 1) will either serve (D; = 1) or
not in military.

* In world with perfect compliance, D;(Z) = Z; for all i.

« One example of non-compliance: getting a low draft lottery number
(Z; = 1) but not serving in the military (D; = 0).

+ Potential outcome Y;(z,d) equals 1if person i would have died
between 1974-1983 given lottery assignment z and military service
indicator d.

10
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Several assumptions are needed for causal inference.

SUTVA
Random Assignment (of 2)

-
.

Exclusion Restriction
Nonzero Average Causal Effect of Zon D

LT

Monotonicity

1"



Assumption 1: SUTVA

No interference among units, well-defined potential outcomes.

1. IfZ, = Z;, then D,'(Z) = D,'(Z').
2. If Z; = Z and D; = D/, then Y;(Z,D) = Y(Z', D).

Potential outcomes for unit i not related to others’ treatments.

12



SUTVA (continued)

« SUTVA allows us to define the causal effects in standard fashion.
+ Causal effect for individual i of Z on D is D;(1) — D;(0).
* The causal effect of Zon Yis Y;(1,D;(1)) — Y;(0, D;(0)).

13



SUTVA (example)

- Veteran status (i.e., treatment received) is not affected by others’
draft numbers.

« Mortality rate is not affected by draft status of others.

Can you think of potential violations?

14



SUTVA (example)

- Veteran status (i.e., treatment received) is not affected by others’
draft numbers.

« Mortality rate is not affected by draft status of others.

Can you think of potential violations?

Example: Undrafted people induced to serve in army by drafted friends
(or vice versa).

14



Assumption 2: Random assignment

Assignment is random and does not depend on potential outcomes.

Pr(Z=c)=Pr(Z=1C)

for all c and ¢’ such that .'c = /"¢

15



Random assignment: estimate for ITT

Given SUTVA and random assignment, we can estimate the average
causal effect of Zon Y.

YiYiZi  %iYi(1—2Z)
>iZi  Xi(1=2Z)
And, the average causal effect of Z on D.

YiDiZzi  %iDi(1—Z))
YiZi (1= 2i)

The ratio of these two yields the conventional IV estimator.

v =

= (XiYiZ; XY =Z) >iDiZi XiDi(1—2Z)\ _ cov(Y;, Z;)
iz ni(1-2Z) iz Yi(1—2) | cov(D;,Z)

16



Random assignment: example

Assignment of draft status was based on birth dates (Angrist, Imbens,
Rubin, 1996).

« Random assignment probably not violated.
« How could assignment not be random?

17
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Random assignment: example

Assignment of draft status was based on birth dates (Angrist, Imbens,
Rubin, 1996).

« Random assignment probably not violated.
« How could assignment not be random?

Example: Draft number depends on (future) health of draftee, as
determined by knowledgeable official (e.g., Perfect Doctor).

17


https://www.jstor.org/stable/2291629
https://www.jstor.org/stable/2291629

Assumption 3: Exclusion restriction

Treatment assignment is unrelated to potential outcomes once treatment
received is taken into account.

- Y(Z,D) = Y(Z.,D) forallZ,Z and D

+ Put another way: instrument only influences outcome through D.

This implies: Potential outcomes for always-takers and never-takers
remain the same, regardless of treatment assignment—i.e.,
Yi(1,d) = Y;(o,d) ford = 0,1.

18



Exclusion restriction: implications

This assumption allows us to define potential outcomes as a function of
D only.

Y(D) = Y(Z,D) = Y(Z,D) forall Z,Z and D

We can now define the causal effect of interest—the effect of D on Y for
person iis Y;(1) — Y;(0).

19



Exclusion restriction: example

Civilian mortality risk is not affected by draft status once veteran status
taken into account, i.e., draft number influences civilian mortality risk
only through serving in army/becoming a veteran.

Can you think of violations?

20



Exclusion restriction: example

Civilian mortality risk is not affected by draft status once veteran status
taken into account, i.e., draft number influences civilian mortality risk
only through serving in army/becoming a veteran.

Can you think of violations?

Men with low draft numbers might alter their educational plans to get a
deferment; in turn, this would likely influence a range of outcomes
including civilian mortality risk.

20



Assumption 4: Nonzero Average Causal Effect of Zon D

At least one person needs to be influenced by instrument.
E[D;(1) — Di(0)] # 0

Requires that we have some compliers or defiers, not just always-takers
and never-takers.

21



Nonzero Average Causal Effect of Z on D: example

Low lottery number increases average probability of service.

Very reasonable assumption: Of men born in 1950, those with low lottery
numbers had a 16% higher probability of serving in the military than

those with high lottery numbers.

22



Assumption 5: Monotonicity

No defiers.
Di(1) > D;(o) foralli=1,...,N

Assumptions 4 and 5 imply D;(1) > D;(0) with strict inequality for at least
one i.

This condition is referred to as strict (or strong) monotonicity.

23



Monotonicity: example

There is no one who would have served if given a high lottery number,
but not if given a low lottery number.

Potential violations?

24



Monotonicity: example

There is no one who would have served if given a high lottery number,
but not if given a low lottery number.

Potential violations?

Someone would have volunteered for a particular branch of the armed
services with a high draft number, but avoids service if compelled to go

into the army by a low draft number... AND, the effect of service on health
outcome is different from the effect for compliers.

Air Force versus Navy.

24



Formal definition of an instrument in RCM

A variable Z is an instrumental variable for the causal effect of D on Y if
Assumptions 1-5 all hold.

1. SUTVA

Random Assignment (of 2)

Exclusion Restriction

Nonzero Average Causal Effect of Zon D

CLE

Monotonicity

25



Interpreting the IV Estimand

Using only SUTVA and exclusion restriction, we have relationship
between intention-to-treat effects of Zon Y and D and the causal effect
of D on Y at the unit level.

Yi(1,Di(1)) — Yi(0,D(0)) = Yi(Di(1)) — Yi(Di(0))
= [Yi(1) - Di(1) + Yi(0) - (1 = D;(1))]
= [¥i(1) - Di(0) + Yi(0) - (1 — Dj(0))]
- (Dj(1) = Di(0))

Product of causal effect of D on Y and causal effect of Z on D.

26



Interpreting the IV Estimand (continued)

Causal effects for subpopulations with D;(0) # D;(1) (i.e., compliers and

defiers).
E[Y;(1,D;(1)) — Y;(0,D(0))]
= E[(Yi(1) — Yi(0))(Di(1) — D;(0))]
i(0)|Di(1) — Di(0) = 1] - P[D;(1) — D;(0) = 1]

|
=
=

|
=
o
)
-

|
S
B

I

|
=
)
)
=

|
)
o

I

|
=

Weights sum to P[D;(0) # D;(1)].
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Interpreting the IV Estimand (continued)

Apply the Monotonicity assumption, which requires D;(1) > D;(0). This
removes defiers (i.e., people for whom D;(1) — D;(0) = —1).

Average causal effect of Z on Y equals product of the average causal
effect of D on Y for compliers (D;(0) = 0, D;(1) = 1).

E[Yi(1,Di(1)) — Yi(0, D(0))]
= E[(Yi(1) = ¥i(0))(Di(1) = Di(0))]
= E[Y;(1) = Yi(0)|D;(1) — Di(0) = 1] - P[Dj(1) — D;(0) = 1]

28



Interpreting the IV Estimand (LATE)

Given Assumptions 1-5, the IV estimand is

i.e., the proportion of the population who are compliers.

29



Vitamin A Example: Sommer-Zeger (1991)

RCT of the impact of vitamin A supplements on children’s survival.

Villages in Indonesia were assigned to receive vitamin supplements.
Deaths were ascertained 12 months following baseline.

Assignment | Supplement | Survival
5% Dybs yobs # Units | Type
0 0 o 74 ?
0 o 1 11,514 ?
1 o 0 34 ?
1 0 1 2,385 ?
1 1 0] 12 ?
1 1 1 9,663 ?

30



Vitamin A Example: Sommer-Zeger (1991)

RCT of the impact of vitamin A supplements on children’s survival.

Villages in Indonesia were assigned to receive vitamin supplements.
Deaths were ascertained 12 months following baseline.

Assignment | Supplement | Survival
5% Dybs yobs # Units | Type

0 0 0 74

0 o 1 11,514

1 o o 34 N

1 o) 1 2,385 N

1 1 0] 12 C

1 1 1 9,663 C
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Vitamin A Example: Sommer-Zeger (1991)

RCT of the impact of vitamin A supplements on children’s survival.

Villages in Indonesia were assigned to receive vitamin supplements.
Deaths were ascertained 12 months following baseline.

Assignment | Supplement | Survival

5% Dybs yobs # Units | Type
0 0 o 74 C/N
o} 0 1 11,514 | C/N
1 o o 34 N
1 0 1 2,385 N
1 1 0] 12 C
1 1 1 9,663 C

31



Vitamin A Example

Assignment | Supplement | Survival

Z3bs Dybs yobs # Units | Type
0 0 o 74 C/N
0 0 1 11,514 | C/N
1 o] 0 34 N
1 o] 1 2,385 N
1 1 0 12 C
1 1 1 9,663 C

Noncompliance: 2,419 children lived in villages assigned vitamin A
supplements, but refused to take them.

How do we proceed with analysis to obtain valid causal inferences?

32



Intention-to-Treat Analysis

Intention-to-treat analysis: outcomes are compared for units with
different assigned treatments.

1 N
ITTy = N > _[Yi(1, Di(1)) — Yi(0, D;(0))]
i=1
1 7T¢

Without further assumptions, ITTy does not summarize the causal effect
of treatment received.

The analogue for the observed data summarizes causal effect of
treatment assigned, not treatment received.

33



Intention-to-Treat Analysis (continued)

1
Ty = (NalTTS + NaITT} + NITT;, + NgITTY)

Under exclusion and monotonicity assumptions, we have

The conventional instrumental variables estimator is in Imbens and
Rubin (1997): - _
By = Y1 = Y20

Y -
Under strict monotonicity assumption, d, — d, is an unbiased estimator
of fraction of compliers.

34
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Intention-to-Treat Analysis (continued)

1
Ty = (NalTTS + NaITT} + NITT;, + NgITTY)

Under exclusion and monotonicity assumptions, we have

ITTy
Nc/N

The conventional instrumental variables estimator is in Imbens and
Rubin (1997):

ITT, =

By = Yz=1— Yoo

dy—1 — dy—o
Under strict monotonicity assumption, d, — d, is an unbiased estimator
of fraction of compliers. Furthermore, y,. — y,. can be interpreted as a
causal effect of treatment received only under the exclusion restriction.


https://www.jstor.org/stable/2971731
https://www.jstor.org/stable/2971731

The IV estimand is

E[Y;(1) = Yi(0)|D;(1) — Di(0) =1] =

Following monotonicity,

i.e., the proportion of the population who are compliers.

35



Hence, how we can estimate the LATE?

Given our assumptions:

Assignment | Supplement | Survival

Z3be Deovs yebs | 4 Units | Type
0 0 0 74 C/N
o} o} 1 11,514 | C/N
1 o} 0 34 N
1 0 1 2,385 N
1 1 0 12 C
1 1 1 9,663 C

If we make the 5 assumptions, our estimate of the LATE is the CACE:

1 Ty, —
N(NC ATTe+ N, - ITT, + Ng - ITT, + Ny - ITTd> N NN~ CACE

36
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Today'’s references

References:

+ Imbens, G. (2010). “Better LATE Than Nothing: Some Comments on
Deaton (2009) and Heckman and Urzua (2009)”, Journal of Economic
Literature, 399-423.

+ Imbens, G. and Rubin, D. (1997.) “Bayesian Inference for Causal
Effects in Randomized Experiments with Noncompliance.” The
Annals of Statistics 25(1):pp. 305-327.

« MW, Chapter 5

* IR, Chapters 12-13.



Today's goals

From ITT to LATE... to ATE?

Extend the ITT framework before to a two-sided non-compliance
case

Motivate observational studies

Talk a little bit about the midterm



From before...



Unit-Level Intent-to-Treat Effects

i(1,1) — Yj(0,0) for compliers
i(1,1) — Yj(0,1) for always-takers
Yi(1,0) — Yj(0,0) for never-takers
Yi(1,0) — Y;(0,1) for defiers

Yi(1,D;(1)) — Yi(0,D;j(0)) =

« Always-takers and never-takers have only one treatment received,
regardless of assignment.

- Compliers and defiers receive different treatments for different
assignments.

 Hence, to gauge causal effect of treatment received, we typically look
at compliers and defiers.



The LATE estimator

Under basic assumptions (and with binary treatment assigned, Z, and
received, D), the IV estimator gives the LATE or the CACE:

CACE = E[Y!—Y°|D! — D? > 0]

= EY]- YD} =1
SLL(Y - ¥9) - d]
S d

Recall, we can estimate CACE given the ratio of intent-to-treat estimates
for our outcome and endogenous treatment of interest:

—E(Y*|Z=0)
—E(D*|Z=0)

cace— v _E
ITTp E

(V12 =1)
(D2 =1)




The LATE estimator (continued)

The following provides a consistent estimator of the LATE:

Estimating LATE under assuptions 1-5 (AIR, 1996), no covariates

7 (smzn)/(5m2) - (s20-2%) /(sn0-2)
o <Z,n:1 Z,-D,-) / <z;,f':1 z,-> = (Z,‘Lm ~ Z,-)D,-> / <Z?:1(1 — Zi)>




Independence of Z with respect to potential outcomes

« Recall that under non-compliance, units now have a broader set of
potential outcomes: (Y,-(1, D?),Yi(o,D?), D}, D?)
« If we assume the exclusion restriction, this implies Y;(z,d) = Y;(Z, d).



Challenges presented by non-compliance

« Inability to straightforwardly estimate ATE
- When share of non-compliance is high, precision deteriorates

10



Hypothetical schedule of potential outcomes

Unit | Y] | Y? | & | di(z=1) | di(z=0) | Type
1 6| 4| 2 1 0 ?
2 3121 0] o] ?
3 4|5 |-1 o) o) [
4 3|03 1 0] ?
5 2 (1|1 0 0 ?
6 5| 4|1 0] o] ?
7 2|11 1 0] ?
8 6| 6|0 1 0] ?
9 5|13 ]2 1 o) g
10 (8| 7 | 1 o] 0] ?

This implies one-sided non-compliance.
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4 3|03 1 0] ?
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Hypothetical schedule of potential outcomes

Unit | Y] | Y? | & | di(z=1) | di(z=0) | Type
1 |6 |42 1 0 co
2 3|21 0 0 nt
3 |4|5]|-1 0 0 nt
4 | 3]0 |3 1 0] co
5 |[2|1]1 0 0 nt
6 |5 4|1 0 0 nt
7 | 2|11 1 0 co
8 6| 6|0 1 0] co
9 5132 1 0] co
10 |87 |1 0 0 nt

This implies one-sided non-compliance. Questions: what is CACE? NACE?
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Hypothetical schedule of potential outcomes

Unit | Y] | Y? | & | di(z=1) | di(z=0) | Type
1 |6 |42 1 0 co
2 3|21 0 0 nt
3 |4|5|1 0 0 nt
4 | 3103 1 0] co
5 |[2|1]1 0 0 nt
6 |5 4|1 0 0 nt
7 | 2|11 1 0 co
8 6| 6|0 1 0] co
9 5132 1 0] co
10 |87 |1 0 0 nt

This implies one-sided non-compliance. Questions: what is CACE? NACE?
CACE=(2+3+1+0+2)/5=8/5. NACE=(1+(—1)+1+1+1)/5=4/5.

12



CACE, NACE, and ATE

From before, we know the (sample) ATE is the average treatment effect
amongst all units. Or, equivalently:

ATE

NCO Nnt
—2 . CACE + —~ - NACE
N TN

(5/10) - (8/5) + (5/10) - (4/5) = 6/5

13



Group ACE vs. ITT

The prior slides demonstrate that NACE is a well-defined causal quantity,
but estimation is challenging due to compliance.

With one-sided non-compliance, in general, this implies NACE # ITT,
despite the fact that CACE = ITT,.

14



Group ACE vs. ITT

The prior slides demonstrate that NACE is a well-defined causal quantity,
but estimation is challenging due to compliance.

With one-sided non-compliance, in general, this implies NACE # ITT,
despite the fact that CACE = ITT,.

We can see this another way by expanding our table from before
(assuming the exclusion restriction).

14
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Two-sided non-compliance

17



Example: CNN townhall on gun policy

CNN'’s town hall on gun violence was the
network at its best — and worst

The teens might not save us, but neither will CNN.

By Todd VanDerWerff | @tvoti | todd@vox.com | Feb 25,2018, 1:30pm EST
f L 4 r/? SHARE

Town Hall
rise, Florida

Stoneman Douglas High senior Emma Gonzalez asks NRA spokesperson Dana Loesch a question at a CNN town hall
| CNN

Figure 1: A useful title from Vox 18



Hypothetical experimental design

Suppose you worked for CNN and you wish to know whether viewing the
townhall has an effect on viewers’ attitudes on gun control.

19



Hypothetical experimental design

Suppose you worked for CNN and you wish to know whether viewing the
townhall has an effect on viewers’ attitudes on gun control.

* You obtain a sample of n = 5,000 possible TV viewers, and gather
their pre-treatment covariates (e.g., age, gender, party affiliation)
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Hypothetical experimental design

Suppose you worked for CNN and you wish to know whether viewing the
townhall has an effect on viewers’ attitudes on gun control.

* You obtain a sample of n = 5,000 possible TV viewers, and gather
their pre-treatment covariates (e.g., age, gender, party affiliation)

 You randomly assign individuals into either an encouragement
condition (e.g., “Please, watch the townhall”) or a control condition
(e.g., “Please, watch some TV at some point”).
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 You randomly assign individuals into either an encouragement
condition (e.g., “Please, watch the townhall”) or a control condition
(e.g., “Please, watch some TV at some point”).

+ After the townhall, you ask each person whether they watched the
townhall (including those in the control arm).
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Hypothetical experimental design

Suppose you worked for CNN and you wish to know whether viewing the
townhall has an effect on viewers’ attitudes on gun control.

* You obtain a sample of n = 5,000 possible TV viewers, and gather
their pre-treatment covariates (e.g., age, gender, party affiliation)

 You randomly assign individuals into either an encouragement
condition (e.g., “Please, watch the townhall”) or a control condition
(e.g., “Please, watch some TV at some point”).

+ After the townhall, you ask each person whether they watched the
townhall (including those in the control arm).

« For each person in the sample, you solicit their post-treatment
attitudes on gun control. E.g., “Would you support a federal ban on
assault weapons? Yes, or no?”

19



A few challenges here

« Those encouraged into treatment may not watch the townhall (i.e.,
they may be never-takers or defiers)

« Those encouraged into control may watch the townhall (i.e., they may
be always takers or defiers), since the show is open for all to view.

« The non-compliance is two-sided because it can occur both when
assigned to treatment or assigned control.

20



Hypothetical (observed) data from the CNN experiment

Assuming two-sided non-compliance...

Encourage | Watched | Support
Z:bs Dybs Yebs | # Units | Type
0] o] o] 995 ?
o] o] 1 1,299 ?
o] 1 0 52 ?
o] 1 1 154 ?
1 o] 0 657 ?
1 o] 1 870 ?
1 1 o) 242 ?
1 1 1 731 ?

21



Hypothetical (observed) data from the CNN experiment

Assuming two-sided non-compliance...

Encourage | Watched | Support
AL eks Yebs | # Units | Type
) ) o) 995 | co/nt
o) o) 1 1,299 | co/nt
o 1 o) 52 at/de
o] 1 1 154 at/de
1 o 0 657 | de/nt
1 o} 1 870 | de/nt
1 1 0 242 at/co
1 1 1 731 at/co
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Hypothetical (observed) data from the CNN experiment

Assuming two-sided non-compliance...and monotonicity...

Encourage | Watched | Support
Z2v D¢bs yebs | # Units | Type
0 0 o] 995 | co/nt
o) o) 1 1,299 | co/nt
o) 1 0 52 at
o) 1 1 154 at
1 0 0 657 nt
1 o) 1 870 nt
1 1 0 242 | at/co
1 1 1 731 | at/co
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Hypothetical (observed) data from the CNN experiment

Assuming two-sided non-compliance...and monotonicity...

Encourage | Watched | Support
Z2v Dpbs yebs | # Units | Type
0 0 o] 995 | co/nt
o) o) 1,299 | co/nt
o) 1 0 52 at
o) 1 1 154 at
1 0 o} 657 nt
1 o) 1 870 nt
1 1 0 242 | at/co
1 1 1 731 | at/co

From the above, can we estimate CACE?
23



Computing the CACE under two-sided non-compliance

« As before, we know that CACE = ITTy/Pr(Complier).
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Computing the CACE under two-sided non-compliance

« As before, we know that CACE = ITTy/Pr(Complier).

« By LTP (and monotonicity) we know:
Pr(Complier) + Pr(Always-taker) + Pr(Never-taker) = 1.
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Computing the CACE under two-sided non-compliance

« As before, we know that CACE = ITTy/Pr(Complier).
« By LTP (and monotonicity) we know:
Pr(Complier) + Pr(Always-taker) + Pr(Never-taker) = 1.

* Hence, Pr(Complier) = 1 — Pr(Always-taker) — Pr(Never-taker).
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Computing the CACE under two-sided non-compliance

« As before, we know that CACE = ITTy/Pr(Complier).
« By LTP (and monotonicity) we know:
Pr(Complier) + Pr(Always-taker) + Pr(Never-taker) = 1.
* Hence, Pr(Complier) = 1 — Pr(Always-taker) — Pr(Never-taker).

+ Estimating Pr(Alv@taker) and Pr(Nev/ethaker) allows us to identify
CACE.

24



Compliance scores

Define each unit's pre-treatment probability of being a complier,
always-taker, never-taker, and defier by:

® Tico
® Tjat
® Tint
® Tide

Due to randomization, we know that Z Il (7o, Tat, Tnt, Tde)

This means the expected share of compliers, defiers, always-takers, and
never-takers is equal in both groups. l.e.,

E(mj) = E(m|Z) = E(mj|Z = 1) = E(m;|Z = 0)
, forallj € {co, at, nt, de}.

25



Estimating Pr(Always-taker) and Pr(Never-taker)

Zgbs | Dobs | Yobs | 4t Units | Type
O | O | O 995 | co/nt
o) o) 1 1,299 | co/nt
o) 1 o} 52 at
o) 1 1 154 at
1 o] o] 657 nt
1 0 1 870 nt
1 1 o] 242 at/co
1 1 1 731 at/co
: E/(Wa\t) = E(wﬂz\z O) = soermoeresrim = 0-0824.
. Im = E(Wn/dZ\iZ % = 0.6108.

¢ E(mieo) = 1 — E(riqt|Z = 0) — E(mm|Z = 1) = 1— 0.0824 — 0.6108
26



At long last, CACE!

We can estimate CACE by:

Ty  0.0592
E (7o) 0.3068

= 0.193

27
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At long last, CACE!

We can estimate CACE by:

Ty  0.0592
E(r,) ©-3068

= 0.193

If you're interested in designs that accomodate missing data/attrition in
the outcome: see, for example, Yau and Little (2001) and related work.

27
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What about uncertainty?

A few choices:

+ Closed-form estimation of variance of CACE (see IR)
+ Bayesian methods (e.g., Imbens and Rubin, 1997)

« The Jackknife

« Bootstrap methods

28
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The bootstrap?

Main idea: we can approximate the sampling distribution of a given
statistic by repeatedly re-drawing points from the observed data.
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The bootstrap?

Main idea: we can approximate the sampling distribution of a given
statistic by repeatedly re-drawing points from the observed data.

We will focus on the simple nonparametric bootstrap. This will become
increasingly important as we move on in this course.

29



Bootstrap estimation of the variance

Given a sample of size n, and some observed sample statistic T,, our
objective is to estimate the unobserved variance V (T,) from our sample.

30



Bootstrap estimation of the variance

Given a sample of size n, and some observed sample statistic T,, our
objective is to estimate the unobserved variance V¢ (T,) from our sample.
To do this, we will repeatedly simulate X, ..., X, ~ F, and characterize the
variance of our bootstrapped collection of sample statistics.

Bootstrap Variance Estimation

1. Draw X/, ..., X}, ~ F,, with replacement.

2. Estimate T, = f(X,....X)

3. Repeat 1and 2, M times, and store the collection Ty ,,..., T} 4
4. Your boostrap variance is given by

q 1 M ’

/ /

Vboot = M Z Tn,m - M Z Tn,b
m=1 b=1

30



So, can we learn anything about ATE from IV?

Yes, perhaps...

+ Re-weighting our data to estimate ATE (Aronow and Carnegie, 2013)
+ Bounding ATE given experiment (Balke and Pearl, 1997)

31
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So, can we learn anything about ATE from IV?

Yes, perhaps...

+ Re-weighting our data to estimate ATE (Aronow and Carnegie, 2013)
+ Bounding ATE given experiment (Balke and Pearl, 1997)

Two great R packages:

* jcsw

* noncompliance

31
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ICSW (from Aronow and Carnegie, 2013)

Inverse compliance-score weighting

Main idea: if there are pre-treatment covariates that are predictive of
compliance status, you can re-weight the sample estimate of the LATE in
a manner akin to the Horvitz-Thompson (1952) estimator to obtain:

ICSW estimator for the ATE, Aﬁ:‘EW —

(S wez,) /(S Wezs) - ( S Wal1 - 2)Y:) /(i w1~ 2)

(S wazo:) /(S waz) - (i Wt — 2)0;) / ( SL a1 - 2)

where wg = Fk, and P¢; = Pr(D" > D°|X = x;).
Ci

32



Can we infer anything about ATE from our experiment?

We will briefly discuss two approaches next class:

1. Bounding ATE given our experiment (Balke and Pearl, 1997)
2. Re-weighting our data to estimate ATE (Aronow and Carnegie, 2013)
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Today'’s references

References:

« Stuart, E. (2010). “Matching Methods for Causal Inference: A Review
and a Look Forward”. Statistical Science.

* Ho, D., Imai, K., King, G., Stuart, E. (2007). “Matching as
Nonparametric Preprocessing for Reducing Model Dependence in
Parametric Causal Inference.” Political Analysis.

« Rubin, D., and Waterman, R. (2006). “Estimating the Causal Effects of
Marketing Interventions Using Propensity Score Methodology.”
Statistical Science.

* IR, Ch. 12,13, 18



Today's goals

Introduce section on observational studies

Motivate matching in light of experimental theory
 Overview several possible approaches

Discuss their challenges



Observational studies



Observational studies vs. controlled experiments

« In observational studies, the assignment mechanism is typically
unknown.

« While unconfoundness was part of the experimental design in a
controlled experiment, it is an assumption in observational studies:

(Y°,Y') LD |X

« Unconfoundedness is not testable in the following sense: given a
random variable (D, X, Y*), where D € {0,1}, X € RY, and Y* € R, it is
possible to write two potential outcome models (D, X, Y°, Y")
compatible with the observation (D, X, Y*), i.e., such that Y* = Y, and
such that in the first model, unconfoundedness holds; and in the
second one, it does not.



Observational studies vs. controlled experiments

+ This means that we'll need to assert judgment whether
unconfoundedness is plausible or not. E.g., if X is socio-economic
status, if D is smoking, and if Y* is the health outcome, does it make
sense?

- Similarly, the propensity score e (x) (conditional probability of being
treated) is unknown. We will have to estimate it.



Estimating treatment effects

+ Under unconfoundedness, the ATE is computed by E [ATE (X)], where
ATE(X) =E[Y|D=1,X] —E[Y|D=0,X].

« When X is discrete, easy: view study as a stratified experiments with
as many blocks as there are values that X can take.

« When X is continuous, this is more difficult, as the expectations are
conditional on X = x, a zero-probability event. We will explore
several attempts to address this difficulty.



Propensity score and unconfoundedness: reminders

« Recall the propensity score is defined as e (X) = Pr (D = 1|X). Under
unconfoundedness, we have

(Y,Y') LD |e(X).
+ Overlap condition: 0 < e (x) < 1 for all x in the support of Py.
* Under unconfoundedness, the ATE is computed by E [ATE (X)], where
ATE(X) =E[Y|D=1,X] — E[Y|D = 0,X],
and hence ATE = E [ATE (e)]
ATE(e) =E[Y|D=1,e(X)=e] —E[Y|D=0,e(X) = e].

« This means that instead of storing the information X, we could keep
only e (X), which is less information. However, estimating the
propensity score e (x) can be involved. We'll come back to that later.



Efficiency bound

« It is possible to compute what is the best possible accuracy that an
estimator can achieve when the sample size gets large.

- Semi-parametric efficiency bound (e.g., Hahn, 1998): for any
estimator ATE of ATE, we have as
Vilx) | V(X

eX) " 1—e(X)

lim N var (ATE — ATE) > E + (ATE (X) — ATE)?

where V¢ (X) = var (Yd|X), and that this bound can be approximately
attained when the sample size N is large.

« Whether the propensity score e (x) is known or not does not affect
this bound.

10


https://pdfs.semanticscholar.org/21dd/618f5ae113b5e4092403a65777765908a4a0.pdf

Parametric regressions

« Regression approach: assume a parametric (typically linear) form of
E[VID =d,X=x| = aq + Bix

* Hence, regress Y; on X; on both the treated and control sets, and the
estimator of the ATE will be

& = o+ (B — o) X
« Probably the most popular approach in applied work.

« However, a problem is that the specification of the regression is
unknown: here, for instance, nothing guarantees that it should be
linear. We could add higher-order terms but we would then be faced
with a model selection issue.

1"



- Stratified approach: consider blocks partitioning X', namely
X = XUX, U ...U X, and compute
K
3 Pr(X € &) ATE,
k=1
where
ATE, =E[Y*[D=1,X€ X)) —E[Y*|D = 0,X € X}]

- However, a problem with this methodology is that the size of the
blocks that should be set is not obvious: they should not be too
large (in the limit where there is only one bin, the estimator would
become the naive estimator, which is biased); nor too small (because
then some bins would be empty).

12



Kernel estimation

« Nonparametric approach: E [Yd|D =d X= x] is estimated by kernel
estimation using

S K (%) Vi {D; = d}

S K (55%) 1{D;i = d}
where the parameter h (bandwidth) controls how much information
we locally aggregate.

 h should decrease when N gets larger; typically the inverse of a
power of N.

« If K(z) = 1{|z| < 1}, the approach is closely related to blocking.
Typically, a smoother kernel is used, such as the Gaussian kernel
K(z) = exp (—22/2).

13



Estimation by weighting

* Recall, if we know the propensity score, then we can use the
Horvitz-Thompson estimator (1952):

HT—1ZDY;k 1’221 )Y)*
* Indeed,
py*]1 _[EDYX]] _[EDXEYX]
(0] = Cem ) =B ee ) =E0
and similarly,

2[0=20

« In a perfectly randomized experiment, e (x) = N,/N, and we recover
the naive estimator. However, in observational studies, often e (x) is

unknown.
14



Matching estimators

+ Matching idea: for each treated unit, look for a nontreated unit
which offers closest possible resemblance in terms of covariates x,
and record the difference in outcomes.

- Some matching estimators match based on the similarity in the
covariates x; some match based on the similarity in the propensity
score e (x) (propensity score matching).

+ Several variants:

+ Exact matching

« Nearest-neighbor, caliper, and radius matching
« Interval matching

+ Kernel matching

15



Matching estimators

16



+ See Heckman, Ichimura, and Todd (1997).
« Typical estimator is

1
w5 (7 -S|
1 Lien j€lo

where wj; captures the similarity between the propensity score of
units i and j. We'll see examples of wj; later.

+ Advantage of matching methods: no need to estimate the propensity
score (unless we match on propensity score).

17


http://athena.sas.upenn.edu/petra/papers/match.pdf

Nearest neighbor matching

+ Nearest-neighbor matching: for a given unit i, rank the units j such
that D; # D; by increasing |X; — X;|, (i.e., the first ones are the most
similar to i in terms of covariates to have received a different
treatment).

* Let ), (i) be the set of the first m such units.

* Then set wjj = 1{j € Jm (i)}. A unit will be matched with an average
over the m closest neighbors that have received different treatment.

« Important bias as soon as dimension of covariates is above 2.

18



« In kernel methods, can take

__ K(E)1{oi# D}
ket K (%24) 1{D; # Dr}

« Same spirit as nearest neighbors but weights all observations.

w (I,)

19



Propensity score matching

Idea: replace X; by propensity score e (X;).

Advantage: if x is high dimensional, handles the “curse of
dimensionality”.

Drawback: e (x) is typically not known and must be estimated.

- 3 steps:

1. Estimate e (x)

2. Define the region of common support, i.e., the set of x such that
o<e(x) <1

3. Match participants to nonparticipants using one of the methods above

20



Propensity score estimation: logistic specification

* In some settings, the propensity score e (x) = Pr (D = 1|X = x) is
known and explicit.
« In others, it is not, in which case it should be estimated. As a result,

_ exp(X'9)
€ (X) = 1+exp (X'¢)

 Note that here, X'¢ = 3\, ¢rX is linear with respect to the entries of
Xk, but this is without loss of generality, as we could replace X by
h (X). For instance one could have

h (X) = (X7 X$>X‘IX27 '--X1XK,X1X2,X§, )

however the dimension of the regressors should increase
moderately with the sample size: beware of overfitting.

21



Propensity score estimation: logistic specification (2)

* The likelihood of (D, ..., Dy) is
N exp (DiX'0)
i1+ exp (X?(b)

- Hence ¢ can be estimated by maximum likelihood by
N
max ) DiXi¢ —log (1 -+ exp (Xi0))
i=1

which is the maximization of a concave function.
- By first order conditions, at the optimal b,

N

Z (D, = eé (X,)) X;=0

i=1

22



Propensity score estimation: logistic specification (3)

- ¢ can be computed by gradient descent using

N
Pt =o' — ¢ (Z (Di - e; (X)) Xi)
i=1
« Consider a random variable U with the logistic distribution, whose
c.df is
Ful@) =7 ixfx(:zz) T +1e2’

and assuming U is independent from X; we can interpret the
treatment assignment mechanism by

D=1{X¢>U}.

23



Example: Card-Krueger study on minimum wage

- Card, D. and Krueger, A. (1994). “Minimum Wages and Employment: A
Case Study of the Fast-Food Industry in New Jersey and
Pennsylvania.” American Economic Review 84 (4): 772-793.

« Abstract: “On April 1, 1992, New Jersey’s minimum wage rose from
$4.25 to $5.05 per hour. To evaluate the impact of the law we
surveyed 410 fast-food restaurants in New Jersey and eastern
Pennsylvania before and after the rise. Comparisons of employment
growth at stores in New Jersey and Pennsylvania (where the
minimum wage was constant) provide simple estimates of the effect
of the higher minimum wage. We also compare employment changes
at stores in New Jersey that were initially paying high wages (above
$5) to the changes at lower-wage stores. We find no indication that
the rise in the minimum wage reduced employment.”

24



A natural experiment

« On April 1, 1992, New Jersey raised the minimum wage from $4.25
(federal minimum) to $5.05 per hour. The adjacent state of
Pennsylvania did not. Remained at the federal minimum.

« 410 fast-food restaurants in New Jersey and eastern Pennsylvania
surveyed.

« Treatment: D; = 1if storeiisin NJ, D; = o if in PA.
« OQutcome Y; is employment in store i.

- Covariates X;: chain (Burger King, KFC, Roy Rogers, Wendy's,
Company-owned); region.

25



Results: design and response rates

TaBLE 1—SAMPLE DESIGN AND RESPONSE RATES

Stores in:
All NJ PA
Wave 1, February 15— March 4, 1992:
Number of stores in sample frame:? 473 364 109
Number of refusals: 63 33 30
Number interviewed: 410 331 79
Response rate (percentage): 86.7 90.9 72.5
Wave 2, November 5— December 31, 1992:
Number of stores in sample frame: 410 331 79
Number closed: 6 5 1
Number under rennovation: 2 2 0
Number temporarily closed:? 2 2 0
Number of refusals: 1 1 0
Number interviewed:© 399 321 78

#Stores with working phone numbers only; 29 stores in original sample frame had
disconnected phone numbers.

®Includes one store closed because of highway construction and one store closed
because of a fire.

“Includes 371 phone interviews and 28 personal interviews of stores that refused an
initial request for a phone interview.

Figure 1: 26
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Results: change in employment

TaBLE 3—AVERAGE EMPLOYMENT PER STORE BEFORE AND AFTER THE RISE
IN NEw JERSEY MINIMuM WAGE

Stores by state Stores in New Jersey® Differences within NJ®
Difference, Wage = Wage = Wage> Low- Midrange—
PA NJ NJ—-PA $4.25 $4.26-$4.99 $5.00 high high

Variable @@ (i) (iii) (@iv) w i) (vii) (viii)

1. FTE employment before, 23.33  20.44 -2.89 19.56 20.08 22.25 —2.69 -217
all available observations  (1.35)  (0.51) (1.44) ©.77) (0.84) (114 (137 (1.41)

2. FTE employment after, 21.17  21.03 -0.14 20.88 20.96 20.21 0.67 0.75
all available observations  (0.94) (0.52) (1.07) (1.01) 0.76) (1.03) (144 (1.27)

3. Change in mean FTE -2.16 0.59 2.76 132 0.87 -2.04 3.36 291
employment (1.25) (0.54) (1.36) (0.95) (0.84) (1.14)  (1.48) (1.41)

4. Change in mean FTE —2.28 0.47 275 1.21 0.71 -2.16 3.36 2.87
employment, balanced (1.25) (0.48) (1.34) (0.82) (0.69) (1.01) (1.30) (1.22)
sample of stores®

5. Change in mean FTE —-2.28 0.23 2.51 0.90 0.49 -2.39 329 2.88
employment, setting (1.25) (0.49) (1.35) 0.87) (0.69) (1.02) 134 (1.23)
FTE at temporarily

closed stores to 0¢

Nate: Standard crxors are shown in parentheses. The sample consists of all stores with available data on empl:yymem FTE
(fi ) counts each part-time worker as half a full-time worker. Employment at six closed stores
is set to zero. at four ily closed stores is treated as missing.
*Stores in New Jersey were classified by whether starting wage in wave 1 equals $4.25 per hour (N = 101), is between
84 26 and $4.99 per hour (N = 140) or IS $5.00 per hour or higher (N = 73).
Diff in emp (84.25 per hour) and hlgh-wage (> $5.00 per hour) stores; and difference
in employmem between midrange (84. 26—54 99 per hour) and high-wage stores.
“Subset of stores with available employment data in wavc 1 and wave 2.
%In this row only, wave-2 at four ily closed stores is set to 0. Employment changes are based on the
subset of stores with available employment data in wave 1 and wave 2.

Figure 3: 28



Causal estimands and matching

Oftentimes researchers choose to estimate the ATT rather than the ATE
using matching methods.

29


http://www.jstor.org/stable/3211657
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2943670/pdf/nihms200640.pdf

Causal estimands and matching

Oftentimes researchers choose to estimate the ATT rather than the ATE
using matching methods. When/why is this?

More on this: Imbens (2004) and Stuart (2010)

29


http://www.jstor.org/stable/3211657
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2943670/pdf/nihms200640.pdf

Desirable properties of a matching estimator

From Rubin and Thomas (1992) and Rubin and Thomas (1996):

- Affinely invariant (same matches given linear transormations of the
covariate space)

» Equal percent bias reducing: EPBR (Rubin, 1974; Rubin and Stuart,
2006)

30


https://projecteuclid.org/euclid.aos/1176348671
https://www.ncbi.nlm.nih.gov/pubmed/8934595
https://onlinelibrary.wiley.com/doi/abs/10.1002/j.2333-8504.1974.tb00672.x
https://projecteuclid.org/euclid.aos/1162567634
https://projecteuclid.org/euclid.aos/1162567634

General framework for matching methods

1. Define “closeness”
2. Implement matches, given closeness definition
3. Assess quality of matches, and estimate treatment effects

31



General considerations

- All approaches rely on a strong selection on observables assumption
(i.e., strong ingnorability, or no unobserved differences between
groups conditional on covariates)

« Important to include all (pre-treatment) variables related both to the
treatment assignment and outcome

+ Multivariate methods prone to variance increases given irrelevant
controls; PSM less prone to irrelevant variables

 Naive computation of standard errors generally too low after
matching (Imbens and Wooldridge, 2009)

- Small sample settings prevent conditioning on large number of
controls, and may overfit via PSM.

32


https://www.aeaweb.org/articles?id=10.1257/jel.47.1.5

Other common distance measures

* Exact: D,'j =0 ifX,' = Xj; else D,’j = 00Q.
Mahalanobis: Dj = (X; — X;)’S7"(X; — X;), where X is the variance
covariance matrix.

Propensity score: D = |e; — g
« Linear propensity score: D; = |logit(e;) — logit(e;)|

33



Caliper matching

Oftentimes, you will see combinations of heuristics:
D — (X,’ — Xj)/2_1 (X,' = Xj), if ]loglt(e,) = loglt(e,)\ <c
" ) e, if |logit(e;) — logit(e;)| > ¢

Selection of caliper may vary depending on methods used, but
Rosenbaum and Rubin (1985) suggest 0.25 standard deviations of linear
propensity score.

34


https://www.jstor.org/stable/2683903

Good settings for matching methods

« Lots of data, with rich pre-treatment covariates

« When there is considerable imbalance between number of treated
and control units

« When outcome values are not yet available (e.g., in an experiment),
and matching used to guide follow up

« In settings with cost constraints

« Randomized trials in smaller sample settings (match units a priori,
then randomize)

35



Limitations/challenges of methods

« Variance estimation: this is still a hot topic (e.g., Imbens, 2014)

« Selection among potential methods

- Strong ignorability is untestable

« What to do in presence of missing data (e.g., multiple imputaion)

36


http://ftp.iza.org/dp8049.pdf

Practical guidance

« If wanting to estimate ATE, estimate via IPTW or full matching
(Hansen, 2004)

« If goal is ATT: nearest neighbor matching, subclassification

« Examine balance of pre-treatment covariates; it is possible for
matching methods to fail, since on units weights are determined by
convex hull.
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Today'’s references

References:

« MW, Chapters 6-7

+ Lee, D., and Lemieux, T. (2010). “Regression discontinuity designs in
economics” Journal of Economic Literature.

+ Calonico, S., Cattaneo, M., and Titiunik, R. (2014). “Robust
Nonparametric Confidence Intervals for Regression-Discontinuity
Designs.” Econometrica.



Today's goals

+ Motivate time series analysis via Diff-in-Diff

« Introduce regression discontinuity (and related designs)

 Think about earlier experimental assumptions in this light

« Briefly discuss problems that commonly arise (and ways to address)



Differences-in-differences



Basic idea

+ The idea in difference-in-difference (DID) is that heterogeneity is
captured by a time-invariant additive factor.

- By looking at the double difference in outcomes treated minus
control, after minus before, we can get rid of this factor, and hence,
evaluate the treatment effect.

» The DID estimator is therefore

DID=E[Y" (t,) — Y' (tc) |D =1 — E[Y° (t,) — Y° (to) |D = O]



Regression framework

« Specification:
Yi(t)=a(t)+pt)d+e(t)

and one can assume « (t) = a +~tand p(t) = p+ 3 (t)t, that is
Y (t)=(a+ )+ (p+ B d+ei(D),

where E [¢; (t)] = 0 and cov (¢ (t) , Dj) = 0.
» Hence, ift, =0and t, =1,

Viti=1)-Y(to=0)=7+pd+e&(ti=1)—¢i(to=0),

and hence the treatment effect is estimated by 5.



Parallel trend assumption
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DID: possible biases

« Time-varying unobserved heterogeneity:

® = DD underestimates impact
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Panel fixed-effects

« A generalization of diff-in-diffs is called panel fixed-effects models.
In these models,

Y7 (t) = pDit + Xt + ni + € (t)

where there is time-invariant unobservable heterogeneity 7; at the
unit level.

* By differentiation, if AW;; = W;; — Wj_,), one has
AY] (t) = pADit + vAXie + Ae; (1)

and the treatment effect, measured by p, can be obtained by OLS.
Standard errors should be corrected for autocorrelation.

10



Back to Card-Krueger (1)

« The Card-Krueger study is emblematic of the diff-in-diffs
methodology.

« Two groups: control (PA) and treatment (NJ); before / after raise of NJ
minimum wage.

« Focus on Full Time Equivalent employment.

1"



Back to Card-Krueger (2)

TaBLE 3—AVERAGE EMPLOYMENT PER STORE BEFORE AND AFTER THE RISE
IN NEw JERSEY MINIMuM WAGE

Stores by state Stores in New Jersey® Differences within NJ®
Difference, Wage = Wage = Wage> Low- Midrange—
PA NJ NJ—-PA $4.25 $4.26-$4.99 $5.00 high high

Variable @@ (i) (iii) (@iv) w i) (vii) (viii)

1. FTE employment before, 23.33  20.44 -2.89 19.56 20.08 22.25 —2.69 -217
all available observations  (1.35)  (0.51) (1.44) ©.77) (0.84) (114 (137 (1.41)

2. FTE employment after, 21.17  21.03 -0.14 20.88 20.96 20.21 0.67 0.75
all available observations  (0.94) (0.52) (1.07) (1.01) 0.76) (1.03) (144 (1.27)

3. Change in mean FTE -2.16 0.59 2.76 132 0.87 -2.04 3.36 291
employment (1.25) (0.54) (1.36) (0.95) (0.84) (1.14)  (1.48) (1.41)

4. Change in mean FTE —2.28 0.47 275 1.21 0.71 -2.16 3.36 2.87
employment, balanced (1.25) (0.48) (1.34) (0.82) (0.69) (1.01) (1.30) (1.22)
sample of stores®

5. Change in mean FTE —-2.28 0.23 2.51 0.90 0.49 -2.39 329 2.88
employment, setting (1.25) (0.49) (1.35) 0.87) (0.69) (1.02) 134 (1.23)
FTE at temporarily

closed stores to 0¢

Nate: Standard crxors are shown in parentheses. The sample consists of all stores with available data on empl:yymem FTE
(fi ) counts each part-time worker as half a full-time worker. Employment at six closed stores
is set to zero. at four ily closed stores is treated as missing.
*Stores in New Jersey were classified by whether starting wage in wave 1 equals $4.25 per hour (N = 101), is between
84 26 and $4.99 per hour (N = 140) or IS $5.00 per hour or higher (N = 73).
Diff in emp (84.25 per hour) and hlgh-wage (> $5.00 per hour) stores; and difference
in employmem between midrange (84. 26—54 99 per hour) and high-wage stores.
“Subset of stores with available employment data in wavc 1 and wave 2.
%In this row only, wave-2 at four ily closed stores is set to 0. Employment changes are based on the
subset of stores with available employment data in wave 1 and wave 2.

Figure 3:
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Key assumptions in difference in differences

« Unconfoundedness
 Parallel trends
« SUTVA

If assignment to treatment correlated with unobserved (non-additive)
heterogeneity, diff-in-diff estimator will be biased.

Parallel trends: necessary for unbiased estimation, since treatment
effects are estimated given shifts in gaps between groups.

SUTVA needed for standard reasons

13



One can generalize to settings with more than two time periods, more
than two treatment groups (triple-difference, panel fixed effects).

Flexible framework for large-scale interventions (e.g., tax policies,
medical insurance, )

Challenges: standard errors need to be adjusted (e.g., Moulton, 1986).
Can use permutation tests, cluster/block bootstraps to address concerns.
More discussion in Bertrand et al. (2004).

“Ashenfelter’s dip”

14


https://ideas.repec.org/a/eee/econom/v32y1986i3p385-397.html
https://economics.mit.edu/files/750

More on parallel trends

Is this a testable assumption? Perhaps, somewhat:

15



What if parallel trends not satisfied?

Semi-parametric weighting schemes introduced by Abadie (2005).

More on this next week, as we get into synthetic controls.

16


https://www.jstor.org/stable/3700681

Regression discontinuity

+ ldea: sometimes, a threshold determines eligibility to program
participation. Regression discontinuity (RD) compares participants
and nonparticipants locally in a neighborhood of the threshold.

« Allows for observed and nonobserved heterogeneity.

 Mostly applicable when the criterion is clear and explicit.

- Discontinuities examples:

+ households with landholdings less than a certain size are eligible to
microcredits

- students above a certain standardized score are eligible to
scholarships

- individuals above a certain age are eligible to certain pension
programs

17



Regression discontinuity

« Take an example where treatment=college scholarship, X is
standardized score, Y is earnings if was eligible to scholarship, Y° is
earnings if not.

* Recall Y =D;Y; + (1—-D;) ¥?

i

+ Two types of regression discontinuity:

« Sharp regression discontinuity: D; = 1{X; > X}, in which case
e (x) =1{x>x}
* Fuzzy regression discontinuity design: lim,_,z+ €; (X) # lim,_,3- €; (X)

18



Sharp regression discontinuity: example (1)

« What is the effect of incumbency on electoral outcomes? i.e., do
electors want change or continuity? In other words, what is the
probability of a Democrat winning a House election given that a
Democrat won the previous election?

« Lee (2008) studies a RDD using the margin of victory at the previous
election. Here, sharp discontinuity: if margin>o, then a Dem was
elected, if margin<o, then a Dem was not elected.

« If there is no incumbency effect, then there should be no jump. The
jump is informative about the incumbency effect.

19


https://www.sciencedirect.com/science/article/pii/S0304407607001121

Sharp regression discontinuity: example (2)
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Figure 4: Source: Lee (2007).
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Sharp regression discontinuity: treatment effect

+ Key assumption: E [Y°|X = x] and E [Y'|X = x] are continuous at X.
« In this case, the treatment effect is estimated by
dsgp = lim E[Y*|X =x] — lim E [Y*|X = x].
X—XT

X—X~

 Note that this only measures the treatment effect locally at x.

21



Sharp regression discontinuity: locally linear regression

 Rewrite the previous situation as D; = 1{X; > X}, and
Yi=a'+ 58X +¢
YP =a®+ 8°Xi + ¢
- Then one can estimate o' and 3" by local linear regression: take a
kernel K (u) such that K (u) = o if u < o, for instance
K (u) = exp (—u?/2)1{u > o} and compute (4", 3") that solve
) Xi—X
rglﬁn;’<< T ) (Yi —a— BX)?,
where h controls the bandwidth size.
« For a° and /3°, do the same with another kernel K (u) such that
K(u)=oforu > o.
« The estimator dsgp is then obtained as dsgp = &' — A°.

22



Fuzzy regression discontinuity: example (1)

« Van der Klauuw (2002) uses financial aid data from an East Coast
college. Financial aid officers rank students according to a score
given by

S = ¢o x (first three digit of SAT score) + ¢, x GPA

and rank them into four groups divided by cutoffs S, < S, < S;.

 Groups determine which type of financial aid students are eligible to;
however adjustments (based on merit, affirmative action, or need)
are possible.

+ The FRD approach will consist in comparing individuals with close
scores on each side of the cutoff.

23



Fuzzy regression discontinuity: example (2)

Financial aid (F) in thousands

T T T
270 280 290 300 310 320 330 340
Ability index (S)

Figure 5: Source: van der Klauuw (2002)
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Fuzzy regression discontinuity: treatment effect

+ Assume E [Y°|X = x] and E [Y'|X = x| are continuous at X, and the
propensity score e (x) is discontinuous at X.

 The treatment effect is estimated by

limy_,z+ E[Y*[X = X] — limy_z- E [Y*|X = X]
limy_x+ E [D|X = x| — limyx_ E [DJX = x]

5FRD -

 Note that in the case of sharp regression discontinuity, the
denominator is 1, and one recovers the formula for dsgp.

25



Fuzzy regression discontinuity and unconfoundedness

+ Recall the definition of unconfoundedness: (Y°,Y") L D|X, hence
E[VD=1X=x]=E[V|D=0X=x| =E[V|x=x],
and hence

E[Y'|X =X — E[Y°|X = x]
—E[YID=1,X=x —E[Y'D=0,X=x.

« Unconfoundedness does not require a discontinuity in the treatment;
instead it assumes that similar units will receive similar treatment.

26



Locally linear regression

« As for SRD, take a kernel K (u) such that K(u) = o if u < 0, and
compute (&', ") that solve

miﬁnZK (Xi;X> (Yi —a— BX)?,

and (&1, 51) that solve

miﬁnZK <Xi I; X> (D; — a — bX;)?,
’ i

and similarly for (4°, 5°) and (a°, b°).
* Orrp Is then estimated by

Q' —a°

a —ae’

OFRD =

27



Example: Duflo-Hanna-Ryan (2012)

« Study on the effect of incentives in Indian primary school.
« Teacher's salary was a function of attendance:

 Rs. 500 if attended fewer than 10 days in a month, and
- Rs. 50 for any additional day attended that month.

 Expect discontinuity around the 10 days cutoff.

28



RDD around the 10 day cutoff

0.6

0.4+

Attendance rate

0.2+ e

T T T T

0 5 10
Days

FiGURE 3. RDD REPRESENTATION OF TEACHER ATTENDANCE AT THE START AND END OF THE MONTH
Notes: The top lines represent the months in which the teacher is in the money, while the bottom lines represent the

months in which the teacher is not in the money. The estimation includes a third-order polynomial of days on the
left and right side of the change of month.

Figure 6: 29



Other fun RDD applications in data science

« Yelp reviews: effect of stars on consumer demand
- Effects of page location on product demand

30


https://onlinelibrary.wiley.com/doi/epdf/10.1111/j.1468-0297.2012.02512.x

What about sorting?

McCrary (2008) for bunching heuristics.

RDD design is equivalent to local level-randomization, so sorting would
be equivalent to local selection into treatment.

Evaluate distribution of pre-treatment covariates for those on units on
either side of discontinuity.
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Today'’s references
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Today's goals

+ Extensions of diff-in-diff

 What if we care about non-linear differences (e.g.,
“changes-in-changes”, quantile DID)?

« Bridge discussions of matching with DID
« What happens if only one unit is treated?
« How to approach inference?



Extending
differences-in-differences



Recall from before

- Last week we discussed how a difference-in-difference approach can
account for unobserved confounding, by restricting the way in which
confounding can influence outcomes.

+ Consider a model of the form:

Yit = 0itDit + pi + 1t + €it

where potential outcomes for unit i in t are given by

= Wi+ 7vet+ei (1)
it + pi + vt + €it (2)

~

=
I

* Here, 0y = Y}, — Y}

i



More on diff-in-diff

Yit = 0iDit + pi + 7t + €it

 Because y; is fixed, it is not independent of Dj.
« We will need to assume that E[c;;|D;] = E[ejq]-
* Note: identification also possible assuming E[Ac;| D] = E[Ac]



Diff-in-diff in panel data model

- Given structure from before, we can write outcomes in the following

manner:
E[Yi1|Di1 =1 = E[5i1|Di1 :1]+E[Ni|Di1 :1]+71+E[5i1]
E[Yioth =1 = E,Ui|Di1 :1]+70+E[5io]

]

] [
E[Yi1|Di1 - O] - E[Mi|Di1 = 0] +n+ E[5i1]
E[Yioth = O] = E[Ni|Di1 = O] + Y + E[gio]



Identifying ATT in panel framework

5ATT - E[5i1|Di1 - 1]
= [E[Yi1|Di1 = 1] - E[Yi1|Di1 = 0]] - [E[Yio|Di1 = 1] - E[Yio|Di1 = O]]

_ [E[AY,-1|D,-1 ~ 1]] - [E[AY"1|D"1 - O]]

Which highlights the difference-in-differences component.

* Given: E[A8i1|Dit] = E[A{Sh] — E[AYmD,t = 1] = E[AYmD,t = O]

+ Meaning: in absence of treatment, expected outcomes (i.e.,
differences) for treated and control would be the same. This is
equivalent to invoking common trends assumption.



Common extensions

« More than two time periods
« Unit-specific time trends—e.g., Bertrand et al. (2004). Note: need at
least 3 time periods for this.

+ Good example: Angrist and Pischke (2009), re-analyzing study from
Besley and Burgess (2004). Presence of unit-time trends removes DID
estimate.

+ Relaxations of common-trends: Abadie (2005)
« If multiple pre-treatment time periods exist, test common trends
using placebo diff-in-diff.

10


https://academic.oup.com/qje/article/119/1/249/1876068
http://www.mostlyharmlesseconometrics.com
https://academic.oup.com/qje/article/119/1/91/1876083
https://economics.mit.edu/files/11869

Athey and Imbens (2006) (1)

(Very briefly. For much more, see paper.)

« Diff-in-diff estimates are not invariant to non-linear transformations

of outcome variable (e.g., log(Clicks;;) vs. Clicks;)
- Generalizes the changes-in-changes model, of which diff-in-diff is a

special case.
« “[A]llow the effects of both time and the treatment to differ

systematically across individuals...”
+ Nice implementation in qte package in R.

1"


https://faculty.smu.edu/millimet/classes/eco7377/papers/athey%20imbens.pdf

Athey and Imbens (2006) (2)

S = E[Yiy — YN] = E[V3,] — E[R(Yy0)] (3)
= E[Y;,] — E[Fy04(Fy00(Y40)) (4)

Basic idea:
« Begin with a value of y, and find its quantile g in Y,
« Find the corresponding quantile for y in the Y, distribution,

q' = Froo(y)
« Find change in y from R, where R9“(y) = F, 3, (Fy,00(¥)), by finding

value for y at quantile g’ in Y, to yield:
A = F?,Zn(q/) - F\?,go(Q’) = F\?,:m(FY,oo(y)) -y
- Last: compute counterfactual Y =y + A9, st.
REC(y) =y + 09 = Fy 5, (Froo(¥)) 2



Athey and Imbens (2006) (3)

Group 0 Distributions

Q-

Cumulative Distribution Function

-3 1.5 0 Yy 15 3
Values of Y i H

Figure 1: Source: Athey and Imbens (2006). 3



Athey and Imbens (2006) (4)

Group 1 Distributions

Cumulative Distribution Function

Values of Y

Figure 2: Source: Athey and Imbens (2006). "



Athey and Imbens (2006) (5)

1. Given y, find its quantile g in Y,

Group 0 Distributions

2. Find corresponding quantile for
Y in Yoo, @ = Fyoo(V)
3. Find change in y from RYC,

where RY(y) = Fy 5, (Fyo0(Y)), by
finding value for y at quantile g’
in Yo, to yield:

Cumulative Distribution Function

A = F\?,:n (q,) - F\?,:)o(q/)
= F, (Froo(y)) —y

Cumulative Distribution Function

4. Compute counterfactual
YN =y + A9 st S
REIC(y) =y + 09 = Fy g1(Fro0(¥)) =




Synthetic controls

16



The general setting (1)

« As in diff-in-diff, oftentimes we are interested in effects of

interventions on aggregate units, where a set of control units are
used to estimate counterfactual trajectory.

« “Comparative case studies”

« But what if average of control units doesn’t well-approximate the
treated unit (before the intervention)?

17



The general setting (2)

We are interested in effect of an intervention

+ Set of treated units (possibly only one)

Set of control units (numerous)

Observe pre-treatment and post-treatment measures of outcomes
for all units

Preferably, numerous pre- and post-treatment periods

18



Case study: effect of tobacco tax on cigarette sales in CA

« Taken from Abadie et al. (2010).

+ Setup to problem originally formulated in Abadie et al. (2003), which
looked at effects of terrorism on economic growth in Basque country.

19


http://scunning.com/abadie-diamond-and-hainmuel.pdf
http://www.nyu.edu/gsas/dept/politics/faculty/beck/abadie_aer.pdf

Problem
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Figure 3: Source: Abadie et al. (2010). 20



Setup and notation

WLOG, assume there is only one treated unit

There are J + 1 total units, and time periods 1,2,...,T

The treated unit receives treatment in periods To +1,...,T
J other units are potential controls (“donor pool”)

The synthetic control estimator is

J+1

ot =Y — w;Yje
j=2

Recall: this should look fairly familiar to the matching estimator
motivated several lectures ago.

21



How to construct weights?

22



How to construct weights?

There are many choices!

s Lletw = (Wa,...,Wj,)

- Weightsarew; > oforj=2,...,J+1,and 3} w; = 1.

« X, is a k x 1 vector of pre-treatement variables for treated unit

« Xo is a kR x J matrix of same variables for donor pool

* The vector w* = (w;, ..., w;,,)" is chosen to minimize ||X; — Xow||
(subject to specified constraints)

22



Weighted Euclidean norm

+ Weighted Euclidean norm:

[1X: — Xow|| = /(s — XoW)'V(X; — Xow)

+ Vis diagonal matrix with non-negative values, which control for
relative importance of predictors

« Other choices are possible (e.g., Mahalanobis distance), so long as V
is appropriately defined (symmetric, positive semi-definite)

+ In many cases, solution is unique (e.g., X; not in convex hull of X).

23



Back to example: tobacco tax
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Figure 4: Source: Abadie et al. (2010).
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Estimated weights in tobacco example

Table 2. State weights in the synthetic California

State Weight State Weight
Alabama 0 Montana 0.199
Alaska - Nebraska 0
Arizona - Nevada 0.234
Arkansas 0 New Hampshire 0
Colorado 0.164 New Jersey -
Connecticut 0.069 New Mexico 0
Delaware 0 New York -
District of Columbia - North Carolina 0
Florida - North Dakota 0
Georgia 0 Ohio 0
Hawaii - Oklahoma 0
Idaho 0 Oregon -
Illinois 0 Pennsylvania 0
Indiana 0 Rhode Island 0
Towa 0 South Carolina 0
Kansas 0 South Dakota 0
Kentucky 0 Tennessee 0
Louisiana 0 Texas 0
Maine 0 Utah 0.334
Maryland - Vermont 0
Massachusetts - Virginia 0
Michigan - ‘Washington -
Minnesota 0 West Virginia 0
Mississippi 0 Wisconsin 0
Missouri 0 ‘Wyoming 0

Figure 5: Source: Abadie et al. (2010). o



Pre-treatment covariate balance from synthetic matches

Table 1. Cigarette sales predictor means

California

Average of
Variables Real  Synthetic 38 control states
Ln(GDP per capita) 10.08 9.86 9.86
Percent aged 15-24 17.40 17.40 17.29
Retail price 89.42 89.41 87.27
Beer consumption per capita 24 .28 24.20 23.75
Cigarette sales per capita 1988  90.10 91.62 114.20
Cigarette sales per capita 1980 120.20  120.43 136.58
Cigarette sales per capita 1975 127.10  126.99 132.81

NOTE: All variables except lagged cigarette sales are averaged for the 19801988 period
(beer consumption is averaged 1984-1988). GDP per capita is measured in 1997 dollars,
retail prices are measured in cents, beer consumption is measured in gallons, and cigarette
sales are measured in packs.

Figure 6: Source: Abadie et al. (2010). 26



Synthetic control vs. observed series
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Figure 2. Trends in per-capita cigarette sales: California vs. syn-
thetic California.

Figure 7: Source: Abadie et al. (2010). 27



The period-level differences

gap in per—capita cigarette sales (in packs)
0
|

Passage of Proposition 99 —> |

T
1970 1975

T T
1980 1985

year

T T
1990 1995 2000

Figure 3. Per-capita cigarette sales gap between California and syn-

thetic California.

Figure 8: Source: Abadie et al. (2010).
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Inference? Placebo tests

« For each of the J control units, repeat synthetic control estimation
(but pretend as if control units are treated), and estimate treatment
effect

- Compare collection of J placebo estimates against original
estimate(s)

- Compare rank of &;; against placebo estimates.

« Akin to a randomization inference approach.

29



Results of placebo tests (1)
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Figure 4. Per-capita cigarette sales gaps in California and placebo
gaps in all 38 control states.

Figure 9: Source: Abadie et al. (2010). 30



Results of placebo tests (2)

—— California :
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Figure 5. Per-capita cigarette sales gaps in California and placebo

gaps in 34 control states (discards states with pre-Proposition 99
MSPE twenty times higher than California’s).

Figure 10: Source: Abadie et al. (2010). e



Results of placebo tests (3)

—— California
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Figure 6. Per-capita cigarette sales gaps in California and placebo
gaps in 29 control states (discards states with pre-Proposition 99
MSPE five times higher than California’s).

Figure 11: Source: Abadie et al. (2010). 32



Results of placebo tests (4)
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Figure 7. Per-capita cigarette sales gaps in California and placebo

gaps in 19 control states (discards states with pre-Proposition 99
MSPE two times higher than California’s).

Figure 12: Source: Abadie et al. (2010). 33



Extensions of synthetic control

Abadie and LU'Hour (2017): estimator minimizes:

J+1
X0 — XoWl[2 + A S wyl1X; — X2

j=2
, with A\ > 0. Helps with uniqueness via sparse penalty.
Athey et al. (2017): matrix completion methods, with missing data
Hahn and Shi (2017): superpopulation frequentist methods for
inference
Doudchenko and Imbens (2017): allows weights to vary overtime

34


https://arxiv.org/pdf/1710.10251.pdf
http://www.mdpi.com/2225-1146/5/4/52
https://arxiv.org/pdf/1610.07748.pdf

Next lecture

« We will think about settings when there are possibly many controls
relative to time periods (i.e., N >> T,)
« Or relatively few controls relative to time periods (i.e., T, >> N)
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Today's goals

« Consider cases in which there may be many possible controls; in 1V,
there may be many instruments.

« Motivate model selection in these contexts (cross validation vs.
rate-optimal penalties)

» Focus will be on lasso-type regularization methods (and their close
cousins)

+ Consider synthetic controls and IV in high-dimensional settings



High-dimensional models




Recall from before

« Last class we discussed that challenges may arise when N >> p (e.g.,
more units than periods, which make evaluation of parallel trends
difficult)

« Also difficult when p >> N (e.g., Census data, text/language data,
social media data)

« Richer data sources call for new techniques to apply to classic

settings



p
Y? = 6D+ Bixij + €

j=1

- Assume, as in prior weeks, we have data generated from above.
E[Y; - Y7 =

Here, the collection x are our pre-treatment “control” variables.
In the IV framework, we might also invoke: E[sj|x;, Z] = O



Which “controls” should be in our equation?

Concerns of overfitting and underfitting

Excluding relevant controls can lead to bias

Including irrelevant controls can increase variance

If there are many “non-zero” controls, model fit may not be feasible
(degrees of freedom)

« But if number of key controls is sparse, we have some options



Ad hoc approaches to selecting relevant regressors

t-test for covariates significantly correlated with outcome, then drop
insignificant regressors

F-tests

Cross-validation techniques (but over which prediction function?)
“Wave your hands” and ignore the problem (a traditional choice)

Each of the above can go wrong.



A sparse data-generation process

* Vi =Xifo + ¢

« Egixjj =0

* Xi = (Xj,j =1,...,p), 5 XL, x; = 1 (standardization)
Note: this DGP can be written down with p >> N

Sparsity: s := ||follo = X7, 1{foj # 0} << n
Key idea: number of relevant covariates smaller than sample size.

10



Even with seemingly low p

- Dimensionality can easily change (transformations of variables,
interactions)
« Oftentimes we knowingly simplify model because of d.o.f. concerns.

1"



Approximate sparsity

Vi = Xifo + i + €

« Here, r; is a regularization term (“bias”), which is non-zero.

« Can be shown that the bias is smaller than the estimation error,
which in the limit is:

sl
ogp
n

1 s
—Zr.go— — =0
nif1l n

(0]

12



- Before, motivated objective function with form:

n p

1 2
o2 (i =XiB8)" + Al[Bllo, where ||5]o = >~ 1{fk; # 0}
i=1 j=1
« The penalty parameter \ is a scalar that controls the sparsity

« Solution is not feasible with large p (NP hard)
* Instead, we estimate

n

5 p
L5 (v = xB8)” + A8, where 18]l = 3" 15

s j=1

13



Least absolute shrinkage and selection operator: Tibshirani (1996).

n

1S (vi—xB8)" + Allgll

n i=1

min{ |ly — x3/3 + X181}

Reasonable tradeoff, relative to [, norm. Computationally feasible.

14


http://statweb.stanford.edu/~tibs/lasso/lasso.pdf

Lasso variants

« Elastic net: Zou and Hastie (2005)
min{ |ly — x3JE + al|BIF + (1 — @)[|B]l+ | where a =

« Adaptive lasso: Zou (2006)

p
mind |y — 81 + 2 3 g5}
j=1

Aa

A+ A

+ Group lasso: Yuan and Lin (2006), Friedman et al. (2010)

L L
min{ [y —1 - S %518 + 23 vAilall:
[=1 =1

+ Square-root lasso: Belloni et al. (2011)

min{J % Zn:(y; — Xi[5)? + >\||5||1}

A i=1

15


http://math.arizona.edu/~hzhang/math574m/Read/elasticnet.pdf
http://users.stat.umn.edu/~zouxx019/Papers/adalasso.pdf
http://www.columbia.edu/~my2550/papers/glasso.final.pdf
https://arxiv.org/pdf/1001.0736.pdf
https://www.jstor.org/stable/23076172

How to tune the penalty parameter?

« Two primary choices:

1. Cross-validation techniques: Chetverikov et al. (2016)
2. Rate-optimal penalty choices: Bickel et al. (2009)

16


https://arxiv.org/pdf/1605.02214.pdf
https://www.stat.berkeley.edu/~bickel/BickelRitovTsybakov2009aos.pdf

(K-fold) cross-validation procedure

« Randomly divide data into K subsamples

« Holding out part R, fit model on remaining data, then predict on part
k

» Repeatforallk=1,...,K
+ Combine results:

K Nk
Vg = >_ 2 (k)
k=1

» Common loss is the mean-squared error: .Z(R) = - Sicc, (Vi — Vi)*.

17



Challenges with cross-validation

« In relatively small samples, behavior of CV is still sensitive to initial

sample selection (i.e., sampling noise)
« If p >> N, validity of cross-validation for still an open area of

reseach for lasso-type models
- Two good papers: Yu and Feng (2013); Chetverikov et al. (2016)

18


https://arxiv.org/pdf/1309.2068.pdf
https://arxiv.org/pdf/1605.02214.pdf

Chetverikov et al. (2016)

“In this paper, we derive a rate of convergence of the Lasso estimator
when the penalty parameter \ for the estimator is chosen using K-fold
cross-validation; in particular, we show that in the model with the
Gaussian noise and under fairly general assumptions on the candidate
set of values of ), the prediction norm of the estimation error of the
cross- validated Lasso estimator is with high probability bounded from
above up to a constant by (slogp/n)"? - log’”’®(pn), where n is the sample
size of available data, p is the number of covariates, and s is the number
of non-zero coefficients in the model. Thus, the cross-validated Lasso
estimator achieves the fastest possible rate of convergence up to a small
logarithmic factor log”/®(pn).”

* Gives sparsity bound under general conditions for K-fold CV-lasso

estimator
19



Rate-optimal selection of )\ for lasso

« From Bickel et al. (2009):

A =o0-2y/2log(pn)/n

- However, needs value for o

« One approach: estimate o via intitialization around standard
deviation of sample mean (of outcome of interest). See: Belloni and
Chernozhukov (20009).

20


https://arxiv.org/pdf/1001.0188.pdf
https://arxiv.org/pdf/1001.0188.pdf

Rate-optimal selection of ) for \/lasso

+ Rate-optimal penalty: /2log(pn)/n
- Different objective function yields: globally convex, polynomial time,

tuning free solution.
« Ideal for settings in which n << p, or when n is fairly small in general.

» Original article: Belloni, Chernozhukov, and Wang (2010)

21


https://www.jstor.org/stable/23076172

Post-double selection procedure

Taken from: Belloni, Chernozhukov, and Hansen (2013)

Works in low-dimensional settings, and in high-dimensions with
approximate sparsity in controls.

« Lasso y and x. Keep x if passes threshold.

« Lasso d and x. Keep x if passes threshold. (If an IV model, lasso z and
x as well.)

« Taking union of selected covariates, refit desired model. Utilize
standard Cls.

22


https://academic.oup.com/restud/article/81/2/608/1523757

Simulation study from sparse data generation process

Distributions of Studentized Estimators

post-single-selection estimator post-double-selection estimator

0 0
-8-7-6-5-4-3-2-1 01 2 3 456 7 8 -8-7-6-5-4-83-2-1 0 1 2 3 456 7 8

Figure 1: Source: Belloni et al. (2013) 5



Confidence intervals?

« Authors demonstrate that it is appropriate to use traditional
standard errors after double-selection (e.g., conventional,
cluster-robust, bootstrap)

* Related to: “the number of nonzero coefficients is an unbiased
estimate for the degrees of freedom of the lasso” Zou, Hastie, and
Tibshirani (2007)
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http://users.stat.umn.edu/~zouxx019/Papers/dflasso.pdf
http://users.stat.umn.edu/~zouxx019/Papers/dflasso.pdf

Bayesian structural time series

25



BSTS

« Introduced in Brodersen et al. (2015)

 Parametric extension of synthetic control method

« Builds Bayesian state-space model, under assumptions of common
panel-data framework

« Variable selection occurs via Spike-and-Slab penalization

- Effective model size has analogues to sparsity parameter in lasso

 Weights on variables (e.g., control time series) determined by
proportion of time variable is included in model

26


https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/41854.pdf
https://arxiv.org/pdf/math/0505633.pdf

Differences with traditional synthetic control

(Model-based) extrapolation outside of convex hull of outcome
« Simulation-based method: more simulations, better inferences
Credible posterior-inference on estimated counterfactual given
variable selection

Can generate predictions even in absence of control series.

27



Graphical model of BSTS
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Challenges with BSTS

« Tuning effective model size

« Elicitation of priors? Independent Bernoullis with uniform weights.
(Empirical Bayes?)

« Not a “silver bullet”: still sensitive to initial control variables

« Many draws needed to generate meaningful posterior inference.

31



Two great packages for today’s methods

+ hdm: Chernozhukov et al. (2016)
* CausallImpact:
https://google.github.io/Causallmpact/Causalimpact.html

32


https://cran.r-project.org/web/packages/hdm/vignettes/hdm_introduction.pdf
https://google.github.io/CausalImpact/CausalImpact.html

Cases like:

o<

Interest over time

|&

Jan 28 - Feb 32018

50 —/_\-—N—‘/"\’\’\ Strava 100

L @

Apr9,2017 Aug 27,2017 Jan 14,2018

Figure 13: Strava Google trends following news
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https://www.vox.com/technology/2018/2/1/16945120/strava-data-tracking-privacy-military-bases

Introduction to causal inference for data scientists

Practical challenges with inference

Michael Gill
2018-04-17

Center for Data Science | New York University
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(Some of) today'’s references

References:

« Ding, P, and VanderWeele, T. (2016). “Sensitivity Analysis Without

Assumptions.” Epedemiology.
* Young, A. (2017). “Consistency without Inference: Instrumental
Variables in Practical Application.” Working Paper.

» Others on syllabus



Today's goals

« Theme today: common ways things go wrong (and proposed
approaches for dealing with them)

+ Many reasons for spurious effects

« Sensitivity analysis (for unmeasured confounding)
 The problem of multiple comparisons—and “p-hacking”
+ The problem of “weak instruments”

« Adjusting for estimation error in matching and IV



Unobserved confounding and
sensitivity analysis



A DAG from before

D
X Y

Figure 1: X as a (measurable) confound

« Assuming the data generation process above, conditioning on X
allows the direct effect of D — Y to be nonparametrically identified.

« Having a measure of X, in other words, is necessary to satify
unconfoundedness.



A DAG with unobserved confounding

U

Figure 2: U as an unobserved confound



When unobserved missing) data is not a problem

U

Figure 3: U as an unobserved variable, but doesn’t confound D



Sensitivity analysis

« Ideally: by how much would estimated results change if one were to
adjust for unobserved confounds? Sometimes called “bias analysis”
(e.g., epidemiology, biostatistics).



Sensitivity analysis

« Ideally: by how much would estimated results change if one were to
adjust for unobserved confounds? Sometimes called “bias analysis”
(e.g., epidemiology, biostatistics).

- Criticisms: the presence of unobserved confounding is untestable, so
people may may ad hoc arguments about the degree of the problem

« Practically: in observational studies, a good idea to think about the
sensitivity of your result to a range of scenarios



An example for conservative bounds

Taken from Ding and VanderWeele (2016, 2017)—but changing
notation slightly, to be consistent with rest of the course.

» Yis the outcome, D is the treatment of interest, X is the set of
observed confounds, and U are the unobserved confounds.
For this example, we will think about the relative risk:

RRObS o E(Y*‘D:1aX:X) - Pr(YZ1|D:1,X:X)
WK T E(YD=0,X=x) Pr(Y=1D=0,X=Xx)

Recall (from lecture 2) we can define treatment effects in multiple
ways.

10


https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4820664/
https://www.ncbi.nlm.nih.gov/pubmed/28693043

Further notation

X
* RR(u,y): maximum risk ratio for D v
the outcome comparing any 2
categories of the unmeasured u
confounders, within either
treatment group, conditional on « B — _RR(uY)xRR(d,u)

RR(u,y)+RR(d,u)—1

the observed covariates * RR/B: maximum amount the set

* RR(d,u): how imbalanced the of unmeasured confounders
treatment groups are in the could alter an observed risk
unmeasured confounder, U ratio, RR. Holds for RR > 1.

« If RR < 1, the value is RR x B.

1"



More formally

Define:

RR(u,y|D = 1)
RR(u,y|D = 0)

RR(d, u, k)

maxgPr(Y =1D =1,X=x,U =R)
mingPr(Y =1D =1,X=x,U = R)
maxgPr(Y =1D=0,X=x,U =R)
mingPr(Y =1|D = 0,X = x,U = R)
Pr(U = R|D =1,X = x)
Pr(U = R|D = 0,X = x)

max(RR(u,y|D =1),RR(u,y|D = o))
maxgRR(d, u, R)

12



Getting to true relative risk

« If knowing X, U can control for confounding for the effect of D on Y:

RRUUE _ Sh_ePr(Y=1D=1,X=x,U=R)-Pr(U=R|X=x)
dyk T Sk pr(Y = 1|D = 0,X = x,U = k) - Pr(U = RIX = x)

* The authors demonstrate:

RR4y X RR
RRtrue > RRObS u uy
d7y - d7y RRd’u + RRu7y - 1

+ In words: even with unmeasured confounding, the true relative risk
must be at least as large as this quantity.

13



Example: effects of breastfeeding on infant health outcomes (1)

* D: breastfeeding

- X: age, birth-weight, social status, maternal education, and family
income

« Y: infant death from respiratory infection

+ U: family smoking

14


https://www.ncbi.nlm.nih.gov/pubmed/2886775

Example: effects of breastfeeding on infant health outcomes (1)

* D: breastfeeding

- X: age, birth-weight, social status, maternal education, and family
income

« Y: infant death from respiratory infection

+ U: family smoking

Without controlling for family smoking, original article found that
breast-feeding contributed to a RR = 3.9(Cl, 1.8 to 8.7).

We are interest in how strongly an unmeasured confounder must be
(related to the treatment and outcome) to explain away an effect
estimate.

14


https://www.ncbi.nlm.nih.gov/pubmed/2886775

Example: effects of breastfeeding on infant health outcomes (2)

Suppose:

* RR,y = 4: maximum ratio by which smoking could increase
respiratory death
* RR4, = 2: max by which smoking differed by breastfeeding status

This leads to a bias factor:

RRuy x RRy.,
RRu,y +RRgy —1
= 4x2/(4+2-1)
= 16

-, dividing RR and its Cl by 1.6 is insufficient to overturn the result:
RRg = 2.43, and Clg = (1.1,5.4).

15



The E-value

« “The E-value is the minimum strength of association, on the risk ratio
scale, that an unmeasured confounder would need to have with both
the treatment and outcome, conditional on the measured covariates,
to fully explain away a specific treatment-outcome association.”

+ Taken from Ding and VanderWeele (2017)

E = RRy/RR x (RR — 1)

16


https://www.ncbi.nlm.nih.gov/pubmed/28693043

Computation of the E-value

+ Very simple: £ =3.9,/3.9 x (3.9 — 1)

« Interpretation: “The observed risk ratio of 3.9 could be explained
away by an unmeasured confounder that was associated with both
the treatment and the outcome by a risk ratio of 7.2-fold each, above
and beyond the measured confounders, but weaker confounding
could not do so.”

- Suggestion: in many cases, simple to report this value as a general
sensitivity parameter in observational settings

17



More on calculation

Table 1. Calculating the E-Value for Risk Ratios

Estimate or Cl, by Computation of the E-Value
Direction of Risk Ratio
RR >1
Estimate E-value = RR + sqrt{RR x (RR — 1)}
Cl IfLL < 1, then E-value =1

IfLL > 1, then E-value = LL + sqrt{LL x (LL — 1)}

RR <1
Estimate Let RR* = 1/RR
E-value = RR* + sqrt{RR* x (RR* — 1)}
Cl If UL = 1, then E-value =1

If UL < 1, then let UL* = 1/UL and E-value =
UL* + sqri{UL* x (UL* - 1)}

LL = lower limit of the Cl; RR = risk ratio; RR* = inverse of RR; UL =
upper limit of the Cl; UL* = inverse of UL.

Figure 4: Extensions for different outcomes 18



More on calculation (2)

20

15 —
S
& 10 —
3

(7.26,7.26)
5
RRe,RRyp/(RRey + RRyp = 1) = 3.9

T T T 1
5 10 15 20
RRgy

The E-value essentially sets the 2 parameters, RR , and RRg,, equal to
each other to determine the required minimum for both. The E-value
for Victora and colleagues' (23) estimate corresponds to the point
(7.26, 7.26). RRg, = maximum risk ratio for any specific level of the
unmeasured confounders comparing those with and without treat-
ment, with adjustment already made for the measured covariates;
RRyp = maximum risk ratio for the outcome comparing any 2 cate-
gories of the unmeasured confounders, with adjustment already
made for the measured covariates.

Figure 5: Sensitivity given different values of unobserved RR 19



Table 2. E-Values for Other Effect Measures

Effect Measure

C ion of Approxil E-Value

P

OR or HR for rare outcomes

Rate ratio for count and continuous
outcomes
OR for common outcomes

HR for common outcomes

Difference in continuous outcomes

Risk difference

When the outcome is relatively rare (e.g., <15%) by the end of follow-up, the E-value formula in Table 1 may be
used (37). In a case-control study, the outcome only needs to be rare in the underlying population, notin the
case-control study.

For ratio measures for count outcomes (or nonnegative continuous outcomes), the E-value may be found by replacing
the risk ratio with the rate ratio (or the ratio of expected values) in the E-value formula in Table 1 (37).

When the outcome is common (>15% at the end of follow-up), an approximate E-value may be obtained by replacing
the risk ratio with the square root of the OR (45), i.e., RR = sqrt(OR), in the E-value formula in Table 1.

When the outcome is common (>15% at the end of follow-up), an approximate E-value may be obtained (45) by
applying the approximation RR = (1 - 0.5 R)/(1 — 0.5:9/HR)) i the E-value formula in Table 1.

With standardized effect sizes d (mean of the outcome variable divided by the SD of the outcome) and an SE for this
standardized effect size s, an approximate E-value may be obtained (45-47) by applying the approximation RR =~
exp(0.91 x d) in the E-value formula. An approximate Cl for the risk ratio may be found by using the approximation
(exp{0.91 x d - 1.78 x s}, exp{0.91 x d + 1.78 x s.}). This approach relies on additional assumptions and
approximations. Other sensitivity analysis techniques have been developed for this setting (27-29), but they
generally require additional assumptions, and the variables do not necessarily have a corresponding E-value.

If the adjusted risks for the treated and untreated are p; and py, then the E-value may be obtained by replacing the
risk ratio with p,/p, in the E-value formula. The E-value for the Cl on a risk difference scale is more complex, and
software to obtain this is described in the Supplement (available at Annals.org). Alternatively, if the outcome
probabilities p; and pg are not very small or very large (e.g., if they are between 0.2 and 0.8), then the approximate
approach for differences in continuous outcomes given previously may be used. Other sensitivity analysis
techniques have been developed for this setting (27-29) but generally require additional assumptions and do not
provide a corresponding E-value.

HR = hazard ratio; OR = odds ratio; RR = risk ratio.

Figure 6: Extensions for different outcomes
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Extensions from paper (2)

Table 3. Issues of Interpretation of the E-Value

Interpretation

Likely effect sizes

E-values and sensitivity analysis

Sample size, E-values, and P values

The E-value should be interpreted in the context of the effect sizes that an unmeasured confounder is likely to have
with respect to the outcome and treatment. In the context of biomedical and social sciences research, effect
sizes 22- or 3-fold occasionally occur but are not particularly common; a variable that affects both treatment and
outcome each by 2- or 3-fold would likely be even less common. For purposes of comparison, calculating the
analogous E-value for each of the measured covariates if they had been omitted may be helpful.

The E-value for the respiratory death example was 7.2. In the formula for the bias factor B, a confounder that was
associated with the respiratory death by less than 7.2-fold might explain away the effect estimate but would have
to be associated with the treatment by a risk ratio more than 7.2-fold. Values of the sensitivity analysis variables
with a less extreme confounder-outcome association will require a more extreme treatment-confounder
association, and vice versa.

A large study with a precisely estimated association often has a very small P value; the P value may be made
arbitrarily small by increasing the sample size. However, if the effect size is small, then the E-value will be small.
The E-value depends on the magnitude of the association; it cannot be made arbitrarily large simply by
increasing the sample size. The E-value for the Cl does depend on the sample size. However, as the sample size
increases, the E-value for the Cl does not get arbitrarily large; it is bounded by the strength of the association
(the limit sometimes is referred to in other contexts as the “design sensitivity” [17, 18]). A large sample size may
give a small P value; a large effect size will give a large E-value.

Figure 7: Extensions for different outcomes

21



Multiple comparisons

22



If you test many questions, you'll find false positives

« Big problem in “big data”/“data mining”
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Jelly beans (and more memes)
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- Type I: probability of falsely assuming an “effect exists” when it
doesn’t

« Type ll: probability of falsely assuming an “effect doesn’t exist” when
it does

- Related, but not identical, to discussions of precision/recall in CS
literatures

28



Demonstration in R

n_hyp = 500
n = 100

share_spurious = function(n,n_hyp){

out = replicate(n_hyp,t.test(rnorm(n),rnorm(n)))
p.vals = unlist(out[rownames(out)=="p.value”,])
sum(sort(p.vals)<0.05)/n_hyp

}

shares = replicate(1000,share_spurious(n,n_hyp))

29



Demonstration in R: results

hist(shares, main="Frequency of false positives in simulated data”)

Frequency of false positives in simulated data

200
1

Frequency

100
1

I T T T T T 1
0.02 0.03 0.04 0.05 0.06 0.07 0.08
30
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Bonferroni test

- Very simple, conservative adjustment (but arguably too conservative
in some contexts, e.g., Holm-Bonferroni)
 Given m independent hypotheses:
* Re-scale critical value of p—valueto1— a/m
« Also valid for confidence interval adjustment

« As a general rule: “weaker” effects (in terms of ratio of effect to
estimated error), not magnitiude of point estimate, are more likely to
be overturned by Bonferroni corrections.

Common adjustment for controlling the family-wise error rate (FWER).

31



Consider last HW: effect of Trump’s election on individual stocks
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Figure 13: Aggregate RDD response 32



Effect of Trump’s election on individual stocks (2)

Conventional Bias—Corrected Robust
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Figure 14: Statistical significance by RDD model 3



Effect of Trump’s election on individual stocks (3)

Conventional Bias—Corrected Robust
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Other errors/corrections:

+ Type S and M errors. See, e.g., Gelman and Carlin (2014)

« Type S: probability of estimating the wrong sign of the effect

« Type M: “exaggeration ratio”—expected degree of effect exaggeration
given sample size

 Multiple pairwise comparisons: Tukey multiple-testing adjustment.
Important in many cases in which one may be interested in
comparing all units’/groups’ estimated means (or treatment effects).

35


http://www.stat.columbia.edu/~gelman/research/published/retropower20.pdf
http://faculty.wwu.edu/jmcl/Biostat/mm.tukey

Common problems in IV and
matching

36



“Weak instruments” in IV

- Recent paper by Young (2017), on syllabus

« Re-replication of dozens of 2SLS/IV models in top economics
journals (in primarily observational settings)

« Author shows sensitivity first-stage regression models. In many
cases, causal estimates produced by 2SLS not meaningfully different
from what obtained in OLS.

« Builds on big literature on the problem of “weak instruments”: e.g.,
Chernozhukov and Hansen (2008)

37


http://personal.lse.ac.uk/YoungA/ConsistencyWithoutInference.pdf
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=937943

Uncertainty in matching methods

« Abadie and Imbens (2006): in general, matching estimators not v/N
consistent; propose asymptotic standard error adjustment
(implementation in matching package)

« Abadie and Imbens (2008): naive bootsrap (repeated-resampling
units with equal weights) fails to give valid confidence intervals

+ Abadie and Imbens (2011): bias correction method based on
nonparametric regression techniques

« Otsu and Rai (2018): valid weights for bootstrapped confidence
intervals

38


https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1468-0262.2006.00655.x
https://onlinelibrary.wiley.com/doi/abs/10.3982/ECTA6474
https://www.tandfonline.com/doi/abs/10.1198/jbes.2009.07333
https://www.tandfonline.com/doi/full/10.1080/01621459.2016.1231613

Introduction to causal inference for data scientists

Inference in causal graphs

Michael Gill
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(Some of) today'’s references

References:

MW Morgan, S., and Winship, C. (2014). Counterfactuals and Causal
Inference: Methods and Principles for Social Research, 2nd Edition.
Cambridge.

PGJ Pearl, Glymour, and Jewell (2016). Causal Inference in Statistics: A
Primer.

PM Pearl, Mohan (2012). Graphical models for causal inference.



Today's goals

Motivate graphical models for non-parametric causal identification
« Hands-on practice for interpreting such models
+ Backdoor, and frontdoor criteria

Minimal adjustment sets



Causal graphs



+ Ajoint probability distribution = f(x,, ..., x,) always has the
factorization

f(X1, ..., Xn) = Hf(x,-|x1, ...,Xj_1)
j

- For any pair of variables x; and x; (i < j), we draw an arc from x; to x; if
f(x,-|x1, ...,x,~_1) actually depends on x;.

« Without any restriction, we get a graph with the “triangular”
structure where x; — x; whenever i < j.

« But in many other cases (like our previous examples), can do much
better.

« Note: the construction is not unique, and depends on the ordering
of the indices. Clearly, some are “better” (i.e., induce more sparsity)
than others.



Directed graphs: basic definitions

- The causal relationships are represented by a directed graph.
« Nodes are random variables

« Directed edges: single-headed arrows. X — Y means loosely “rv. X
has a causal effect on r.v. Y”. Precise definition later.

 Vocabulary: path; directed path; descendant; parent; child.



Directed acyclic graphs

« Cycles=a directed path from a node to itself

« Directed acyclic graphs=directed graph without a cycle.

« Thus, we rule out simultaneous causation: “I like you because you
like me”.

+ Property: there is always at least one node without a parent.

B
A C

Figure 1: A directed graph with a cycle



Latent variables

« Two types of nodes: solid circle e indicates observed random
variable, while hollow circle o indicates latent (unobserved) random
variable.

- Shorthand: a curved dashed bidirected edges between two variables
indicates that those variables have a common latent variable among
their ancestors. As in the below example from [MW].

U

) ) ‘.B ) /\B

(a) (b)

Figure 3.2 Two representations of the joint dependence of A and B on unobserved
COMIMON Causes.



DAGs with three variables

« With three variables, three possibilities:

1. Mediation / chain: a - b — ¢:

eg,  f(a,b,c)=f(a)f(bla)f(clb)

2. Mutual dependence / fork: a < ¢ — b:

eg,  f(a,b,c)=f(c)f(alc)f(blc)

3. Mutual causation / collider: a — ¢ < b:

eg,  f(a,b,c)=f(a)f(b)f(cla,b)

10



DAGs: example

SEASON

- Consider the following example, found in
[PM]: Season is dry or wet. Sprinker is on or

off, etc. What is the probability distribution ™™ K (® ram

associated with the graph above?
WET

!

SLIPPERY

1"



DAGs: example

SEASON

- Consider the following example, found in
[PM]: Season is dry or wet. Sprinker is on or

off, etc. What is the probability distribution ™™ K (® ram

associated with the graph above?
M P(X-],,Xs) — %
P (X1) P (Xa|X1) P (X3|X1) P (X4|X, X3) P (Xs|X,) - ®

SLIPPERY

1"



+ Two sets X and Y are blocked (or d-separated) by Z if and only if Z
blocks every path between X and Y. Denoted X L Y|Z.

 Z blocks a path from a to b if:

« there is ¢ € Z such that path contains chain a — ¢ — b or fork:
a<+ c— b;or

« path contains a collider: a — ¢ « b such that c is not in Z and neither
are the descendants of ¢

12



Blocking: example 1

SEASON

N
SPRINKLER K }/@

WET
@ SLIPPERY
Figure 2: Source: [PM].

o Xy LX,[Xo, Xs; Xs L Xs|Xu; Xo LX5|X,
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Blocking: example 1

SEASON

N
SPRINKLER K }/@

WET

@ SLIPPERY

Figure 2: Source: [PM].

o Xy LX,[Xo, Xs; Xs L Xs|Xu; Xo LX5|X,

- X5 1 X,|X
13



Blocking: example 2

LT
4 N
z \

b .’ \ o7 X o—»!—»‘!—»‘!—»‘o Y
Z, 7, I3 L L 4
@ (®)

Figure 3: Source: [PM].

* In (a), XLY
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Blocking: example 2

LT
s N
z \

Xo—»!—»‘!—»‘!—»‘o Y
Z 2 Z3

®)

X o—»o’<—o<—‘o<—o Y
Z Z 3
(a)

Figure 3: Source: [PM].

« In(a), XLY
« In (b) X_LY does not hold

14



Pearl’s do operator (1)

SEASON

« What is the probability that
road is slippery if we observe
RAIN
SPRINELER @\ ® that sprinkler is on?
« What is the probability that
() WET

road is slippery if we ensure
% that sprinkler is on?
®

SLIPPERY

15



Pearl’s do operator (2)

* Recall P (X, ...,X5) = P (Xq) P (Xa|X1) P (X3]X1) P (X4|X2, X5) P (X5|X,,)-

16



Pearl’s do operator (2)

* Recall P (X, ...,X5) = P (Xq) P (Xa|X1) P (X3]X1) P (X4|X2, X5) P (X5|X,,)-
- Probability that road is slippery if we observe that sprinkler is on:

Do, P (X1) P (X2]X1) P (X3]X1) P (X,]X2, X3) P (Xs|Xs,)

Pr (x:|x;) =
Ol = S P 0 P (ala) P (x6) P (i X3) P (X s)

16



Pearl’s do operator (2)

* Recall P (X, ...,X5) = P (Xq) P (Xa|X1) P (X3]X1) P (X4|X2, X5) P (X5|X,,)-
- Probability that road is slippery if we observe that sprinkler is on:

Do, P (X1) P (X2]X1) P (X3]X1) P (X,]X2, X3) P (Xs|Xs,)
e sons P (X1) P (X2|X1) P (X3]X1) P (X4]X2, X3) P (Xs5|X,)

Pr (Xs]x3) =

« Probability that road is slippery if we ensure that sprinkler is on:
replace P (x;]x,) by one in the expression of P (x,, ..., Xs)

Pr (xs|do (x3)) Z P (X1) P (Xa|X1) P (X4|X2, X3) P (Xs|X,)

X1,X2,Xy,

16



Pearl’s do operator (3)

« Graphical interpretation: remove edge x;, — X3

Compute: P(xs|do(xs))

SEASON SEASON
SPRINKLER (o) RAN SPRINKLER RAIN
/ h /

(%) wET () weT
@ SLIPPERY @ SLIPPERY
Figure: DAG before intervention Figure: DAG after intervention

Figure 4: Source: [PM].

17



Magnification

« To each variable X, we associate an “error term” ex. The ey are
unobserved and independent.

« The error terms are not represented under the “standard
representation”, and represented under the “explicit representation”.

ep en
D N D N
N : ’
P Y P Y
(a) Standard representation (b) Under magnification

Figure 3.7 Equivalent directed graph representations of the effects of parental back-
ground (P), charter schools (D), and neighborhoods (N) on test scores (Y').

18



Causal graphs

« In Pearl’s formal definition of a causal graph:

1. all variables (other than error terms) are observed

2. each variable X is associated with an unique error term ey, and the ey
are independent

3. for each variable X, there exists a do (X = x) operation, which replaces
X by the constant x and removes all the arcs pointing at X, leaving
everything else unchanged.

19



Causal graphs (2)

« In the figure below, the causal effect of D on Y is given by
E[Y|do (D = 1)] — E[Y|do (D = 0)].

C
N ?\ c c
Fyp ; .> o
- D Y do(D =0) Y do(D=1) Y

(a) Augmented casual graph with a “forcing™
variable that represents an intervention (b) “Mutilated” graphs that demonstrate the
do(.) operator for the two values of D

20



Backdoor paths

« A back-door path is a path between any causally ordered sequences
of variables that begins with a directed edge that points to the first
variable.

« In the graph below, the causal effect of D on Y is confounded by the
backdoor path D «+ C — O — Y. In order to evaluate this causal
effect, we should condition on {C}, on {0}, or on {C, O}.

C 0

D Y

Figure 5: Source: MW

21



“Collider”” variable and their pitfalls

« As we saw before, in case of a fork, conditioning on the parent

variable allows us to identify the causal effect. What about the case
of a collider?

- Consider a collider A — C < B, where A=SAT score < {0, 1} (low/high);
B=interview outcome € {0, 1} (unfavorable/favorable); and C=college
admission decision € {0,1} (rejected/admitted); e.g.

C=1{A+B>1}.

Assume A and B are unconditionally independent. Conditional on
C =1, Pr(A = B|C = 1) = 2/3 there will be negative correlation
between A and B.

 Hence, conditioning on a collider creates dependence.

Be careful when conditioning on a collider.

22



The back-door criterion (and adjustment sets)

+ Goal: block paths that generate noncausal associations without
blocking paths that generate causal effect.

« Back-door criterion: the causal effect is identified by conditioning on
a set of observed variables Z if two conditions are met:

1. All back-door paths between the causal variable and the outcome
variable are blocked after conditioning on Z, which will will be the case
if each back-door path: (a) contains A — C — B, where Cis in Z; or (b)
contains a fork of mutual independence A + C — B, where Cisin Z, or
(c) contains an inverted fork of mutual causation A — C « B, where C
and all its descendants are not in Z.

2. No variables in Z are descendants of the causal variable that lie on (or
descend from other variables that lie on) any of the directed path that
begin at the causal variable and reach the outcome variable.

« Conditioning on a set that satisfies the back-door criterion identifies
the causal effect.

23



The back-door criterion: example 1

« Example: in the figure below:

« the only back-door pathfromDtoYisD+ C— 0 — Y.
« there is only one directed path from D to Y, whichis D — Y.

« Therefore {C}, {0}, or {C, O} satisfy the back-door criterion.

D Y

Figure 6: Source: MW

24



The back-door criterion: example 2

« Consider the figure below, where the dependence in a lag variable
Y:_, is considered.
+ Is the back-door criterion satisfied?

V/

Figure 7: Source: MW

D

25



The back-door criterion: example 2 (continued)

» There are two back-door paths from Dto Y:
D+~V—=Yy,—Y,andD«+ VY, ,«U—Y
* Y;_. blocks the first back-door path, but not the second one because

it is a collider in the latter. Y;_, being the only observable variable
other than D and Y, the back-door criterion is not satisfied.

Ug

V/

D

Figure 8: Source: MW
26



The back-door criterion: example 3

« Consider the figure below. Is the back-door criterion satisfied?

Figure 9: Source: MW

27



The back-door criterion: example 3 (continued)

There are two back-door paths between D and Y:
D+~A+V—F—=Y,andD+ B+ U—-A«+V—>F—>Y
Ais a collider in the second path but not in the first one. The
problem here is to block the first path without unblocking the
second one.
It turns out that:
- {F} satisfies the back-door criterion as it is part of the chain
V — F — Yin every back-door paths.
- {A, B} satisfies the back-door criterion as A appears in the chain
D + A + Vin the first path, and B appear in the chain D < B« U in
the second path.
Thus, conditioning on either F or on (A, B) will identify the causal
effect.

28



The back-door criterion: example 4

« Consider the figure below. Is the back-door criterion satisfied?

v »

D

Figure 10: Source: MW
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The back-door criterion: example 4 (continued)

« There are two back-door paths between D and Y:
D+~V—=Yir,—=Yes—=Y,andD+ V=Y, U=Y,

« There is no collider in the first path, and Y;_, is a collider in the
second path. In order to block the first path, one need to condition
either on Y;_, or on Y;_,. One cannot condition on Y;_, as itis a
collider in the second path. However, one cannot condition on Y;_,
either as it is a descendant of Y;_,.

+ Hence, the back-door criterion is not satisfied.

30



The back-door criterion: example 5

« Consider the figure below. Is the back-door criterion satisfied?

N

Figure 11: Source: MW
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The back-door criterion: example 5 (continued)

« There is only one back-door paths betweenDandY: D+ C— 0 — Y

* Here, there are two directed paths from Dto Y: D — Y and

D — N — Y. Hence, {C}, {0}, or {C, O} satisfy the back-door criterion;
any set that would contain N would not.

32



The back-door criterion: example 6

« Consider the figure below. Is the back-door criterion satisfied?

Figure 12: Source: MW

33



The back-door criterion: example 6 (continued)

» There are three back-door paths between D and Y:
D«~C—-0—=Y,andD+C—-0+M—=Y,andD+ B—U—Y.

« The candidate conditioning variables are O, B and N. B is needed to
block the third path. O is needed to block the first path, but it will
unblock the second path (collider).

« Actually, the second part of the back-door criterion assumption is
not met either, as O is on a directed path from D to Y.

» Hence, the back-door criterion is not met here.

34



Self-selection bias

+ Consider potential outcomes: Y = DY' + (1 — D) Y° which rewrites into
Y=Yo+ 6D

with § = Y' — Y°. Heckman and Robb (1989) assume D = 1{Z¢ + U > 0}, where Z is
a random vector of observable variables, ¢ is a vector of coefficient, and U is some

unobserved factor. If ey L ey, then there is unconfoundedness; otherwise there is
selection on the unobservables.

Z

D Y D Ay

U U Y. -__.—//

(a) Selection on the observables (b) Selection on the unobservables

Figure 13: Source: MW £


https://link.springer.com/chapter/10.1007%2F978-1-4612-4976-4_7

Self-selection bias (continued)

« Consider the IV regression
Y=a+0D+¢

where ¢ L Z. This can be expressed as a causal graph as follows:

VA ST ~ALE
D Y
(a) Z is a valid instrumental (b) Z is not a valid instrumental
variable for D variable for D

Figure 14: Source: MW
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The front-door criterion: an example

« Consider the directed graph below. The back-door criterion does not
apply because U is unobservable, so the path D +— U — Y cannot be
blocked.

- However, the full effect of D on Y goes through M and N, which are
both observed. Are the four causal effects D -+ M, D —+ N, M — Y and
N — Y identified?

37



The front-door criterion: an example (continued)

By the back-door criterion, the causal effects D —+ M, D — N are

identified (unconditionally).
« By the back-door criterion again, the causal effects M — Yand N — Y

are identified (by conditioning on D).

U

N

Figure 16: Source: MW s



Front-door criterion

- If there is at least one unblocked back-door path connecting a
causal variable D to an outcome variable Y, the causal effect is
identified by a set {X;} of observed variables if the following two
conditions are met:

- Exhaustiveness: any directed path from D to Y contains at least one of
the X;'s, and
« Isolation: there is no unblocked back connecting D to any of the X;,
and all back-door paths from any X; to Y can be blocked by D.
+ For example, the following graph does not satisfy isolation:

u

39



Wrapping up

- Causal graphs are useful ways to express conditional relations

« Can be clarifying as to various strategies for identifying links
between nodes

« Challenge: graphs are assumptions, and generally not known.
Careful meta-analysis or theory must be taken to an individual case.
Even if links are identifiable given adjustment sets, functional forms
may still be ambiguous. “Structure learning” is difficult and also
subject to power/model specification.

« Practical advice: think through possible DAG structures and
functional relationships. If relevant variables are not present in your
sample, consider sensitivity analysis (e.g., from last week)

40



Bonus/encore: Implementations in R!

library(dagitty)
library(lavaan)
library(ggdag)

g <- dagitty('dag {

[pos="0,1"]

[pos="1,1"]

[pos="2,1"]

[pos="1,0"]

[pos="2,2"]

->D->Z7Z ->Y

->W->D ->Y

-> Z

) 4

= X X < = N O X



Implementations in R! View results

ggdag(g,node_size = 20, text_size=12, label_col = "darkgray”)

42



Parents/ancestors

parents(g, "D”)

## [1] "W" Hxﬂ

ancestors(g, "D")

## [1] "D" "x" nwn
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Implied conditional independences

impliedConditionalIndependencies(g)

#tw _[l_Y | D, Z
## X _|l_Y | D, Z
## X _ll_Y | D, W
#t X _|l_z |1 D, W

44



Finding minimum adjustment sets

adjustmentSets(g, "D”, "Y”, type="all”)

#t {w}
#t {w, X}

45



How cool is that?

e’

Figure 18: Source: whoever makes emojis 46
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Today



(Some of) today'’s references

References:

« Athey, S., and Imbens, G. (2016). “Recursive partitioning for

heterogenous causal effects.” Proceeedings of the National Academy
of Sciences.

« Athey, S., Tibshirani, )., and Wager, S. (2017). “Generalized Random
Forests.” Working paper.

« Athey, S., Eckles, D., and Imbens, G. (2017). “Exact p-Values for
Network Interference”. Journal of the American Statistical
Association.



Today's goals

- Recursive partitioning (e.g., CART, Random Forests) for
heterogeneous effects

- Motivate the problem that networks present for causal inference
(e.g., SUTVA), and subsequent inference

- Bird's eye view of course



Machine learning approaches



Central ideas

« Many causal research designs can be segmented down to prediction
versus causal steps. Examples:


https://arxiv.org/pdf/1201.0224.pdf

Central ideas

« Many causal research designs can be segmented down to prediction
versus causal steps. Examples:

- 2SLS for IV: first stage is a prediction. Recall: post-double-selection
with LASSO.

~

+ e(x) =~ prediction, as for matching or IPW estimation.


https://arxiv.org/pdf/1201.0224.pdf

Central ideas

« Many causal research designs can be segmented down to prediction
versus causal steps. Examples:

- 2SLS for IV: first stage is a prediction. Recall: post-double-selection
with LASSO.

~

+ e(x) =~ prediction, as for matching or IPW estimation.

« However, standard machine/statistical learning approaches aren’t
applicable “off-the-shelf” for causal inference.

- Ideally, would like to exploit flexibility of ML models to allow for
heterogeneous estimation (but not “data mine” or p-hack in the
process)

« Need to augment existing approaches to accomodate fundamental
problem(s) of causal inference.


https://arxiv.org/pdf/1201.0224.pdf

Causal inference and missing data

- Standard (supervised) ML pipeline

+ Take "ground truth” measures of observed outcome Y, set of features X,
and hyperparameters 6

« Often care about conditional-mean function:
E[Y?PS|X; = x, 0] ~ f(Y, X, 6)

« Model selection based of minimizing prediction error (or given
complexity penalty), or CV error



Recursive partitioning

Workhorse paradigm for fitting decision/regression trees

Can be used for implicit dimentionality reduction/“clustering”
Direct analogue to nearest neighbors estimation

Works well with discrete features/covariates

Problems, when applied to models:

« Prone to overfitting

+ Unclear of eventual parameter uncertainty from model (bootstrap?)

« Need to specify complexity/regularization parameter, which isn’t
obvious a priori

« Possibly sensitive to scaling/normalization of initial inputs


https://www.jstor.org/stable/27590719

CART: first, an overview

« Classification and regression trees.
« Base paradigm for eventual BART and RF extensions
« Central idea:

1. Begin with pair of observed data, (Y, X), where Y is outcome and X is an
n x p dimensional matrix of features/covariates

2. Make series of binary decisions that partition data to minimize
heuristic of model fit, e.g., MSE

3. Root nodes indicate a particular variable within X, and splits represent
critical value of variable

4. After model is fit, E[Yﬁ(,-\z x] is given by (weighted) average value of
units’ outcomes in same terminal node.



~

CART: example using Lalonde data, for e(X)

« With relatively larger penalty/cost: C,(T) = 0.02
E[D,-|X,- = {age = 50, educ = 1, black = 0, hisp = 0, married = 0, nodegr = 1}] = 0.5567

CART propensity score (penalty = 0.02)

nodegr>=0.5

350
|

250 300
1 1

200
1

Frequency

50
1

0.3764 0.5567 o

n=348 n=97 T T T 1
0.40 0.45 0.50 0.55 10

Predicted propensity score



CART: example using Lalonde data (2)

« With smaller penalty/cost: C.(T) = 0.005

E[D,-|X,~ = {age = 50, educ = 1, black = 0, hisp = 0, married = 0, nodegr = 1}] =7

CART propensity score (penalty = 0.005)

nodeglr>=0.5 -
o
8
(=]
8
educ»=5.5 age>g25.5 > o
g © -
s ®
=]
agex 3A4ge<20.5 §
age<25.5 0.6864 £
0.441 289e>E27.5 n=11 8
n=217
educk=95 g gh1o 04147083020
. n=41n=9,
=3 n=1n=36 ®
0.3189¢ 30.?) o
e [l
0.272D!6 o

n=1h=20 T T T T T 1
0.3 0.4 0.5 0.6 0.7 0.8 1

Predicted propensity score



CART: example using Lalonde data (3)

« With even smaller penalty/cost: C,(T) = 0.001

E[Di|Xi = {age = 50, educ = 1, black = 0, hisp = 0, married = 0, nodegr = 1}] =7

CART propensity score (penalty = 0.001)

nodegr>=0.5

100
|

80
1

educh=5.5 age>f25.5

60

ageq25.5 £
0.6364|

:[ age>l=27.5 n=11

hisp3=0.5

Frequency

v

8

o

40
1

20
1

I T T T 1
0.0 0.2 0.4 0.6 0.8 12

Predicted propensity score



CART: example using Lalonde data (4)

- With even smaller penalty/cost: C,(T) = 0.0001

E[Di|Xi = {age = 50, educ = 1, black = 0, hisp = 0, married = 0, nodegr = 1}] =7

CART propensity score (penalty = 0.0001)

nodegr>=0.5
Q —
3 -
o | ]
@
educp=5.5 age>E25.5

>

o

§ 8-

3

=

o

[
o
<
o
«

I T T T 1
0.0 0.2 0.4 0.6 0.8 13

Predicted propensity score



A decision tree from the NY Times

Decision Tree: The Obama-Clinton Divide

In the nominating 152 county
contests so far, Senator more than
‘Barack Obamahas won the 20 porcent black?
vast majority of counties 1

ighly
educated populations. Yo moosemt 1B T ooy
‘Senalor Hillary Rodham many Arican- as

Clinton has a commanding ncans mihs  AncamAmerican
lead i less. 3 popuation

for a more detailed spit.

‘And s thehigh school
ate i

R
mms&nwmw YES Thisisa. M""“h
S m

it
iy e
.

i

And whereis |r~ county?
Norheastor Soun | West o Midwest
—| frerierid

In 2000, woro

e v 2000, wer many.

—_—
YES Allast MO Atleast

Frerisria
ar%oamea  S3% earned
sstan” e
50000

‘What's e population
o counies
5210 25. ——

Figure 1: Source: NY Times 1%


https://archive.nytimes.com/www.nytimes.com/imagepages/2008/04/16/us/20080416_OBAMA_GRAPHIC.html

Problems with CART model for causal inference

How to set penalty?

Terminal nodes/leaves are sparse (i.e., high variance, inefficient)
Subsequent uncertainty?

« Concerns about double-dipping: own observation might have high
leverage on own predicted value, given small partition membership.
Leads to artificially low variance estimation in each leaf.

(Also, what is relevant MSE criterion?)

15



From Athey and Imbens (2016)

 Key idea: segment data into partitioning subsample and fitting
subsample

Use both jointly, however, for model selection

Adapt conventional loss functions for causal inference setting

16


http://www.pnas.org/content/113/27/7353

Conventional MSE

- Recall: standard loss function Q = —MSE = & >V (Y; — Y:)?
+ Find model that maximizes: Q* = Q — \ x (#leaves).
« Or, do the equivalent with CV holdout error.

17



Adapted MSE

« Treatment effects:
p(d,x) = E[Yi|Di=d,X; = X]
T(X) = N(LX) —,LL(O,X)

« If our goal is to obtain reasonable/consistent estimates of treatment
effects, however, we'd ideally:
- Minimize the MSE of 7(x). l.e., Q = —MSE = AN (1= F)?
+ Can we do this?

18



Adapted MSE

« Treatment effects:

u(d,x) = E[Yi|Di=d, X; =X]
T(X) = p(1,x) — p(0,X)

« If our goal is to obtain reasonable/consistent estimates of treatment
effects, however, we'd ideally:
- Minimize the MSE of 7(x). l.e,, Q = —MSE = AN (1= F)?
+ Can we do this? Not really, because can’t observe this "ground truth”
for any unit
« Why? Fundamental problem of causal inference

18



Adapted MSE (2)

« Authors define the prior MSE as: Q"fea5(7) = —]E[(Ti — T/(;))z]
By properties of variance, can be expanded as:
Qess(#) = ~E[r?] — E[r(x)] + 2E[ () - 7]

19



Adapted MSE (2)

« Authors define the prior MSE as: Q"fea5(7) = —]E[(Ti — T/(;))z]
By properties of variance, can be expanded as:
Qess(#) = ~E[r?] — E[r(x)] + 2E[(x) - 7]

—

E
E[72(x;)]: calculable given a model

—

—E[7?]: fixed across models, independent of 7
—Ef
* Elr(x) -] = E[r(x;) - Y] — T(XI) Y?]

19



Adapted MSE (2)

« Authors define the prior MSE as: Q"fea5(7) = —]E[(Ti — T/(;))z]
By properties of variance, can be expanded as:
Qess(#) = ~E[r?] — E[r(x)] + 2E[(x) - 7]

—

E
E[72(x;)]: calculable given a model

—

—E[7?]: fixed across models, independent of 7
—Ef
* Elr(x) -] = E[r(x;) - Y] — T(XI) Y?]

e B[7(x)) - 7] = E[r(x) - ! — T(x,.> . Y°): estimable, but not typical
~ _ Y’o —_—

> 7(x;) : Treatment effect on transformed outcome

19



Goodness of fit: proposal (1)

A bit more notation:

« m:S — P an algorithm mapping sample, S € S, to partition

« Simple case: consider sample space X = {0, 1}

« Two possible partitions: TIy = {0, 1} (no split), and IIs = {{o}, {1}}
(full split)

+ Space of possible trees: P = {11y, IIs}

20



Goodness of fit: proposal (2)

+ In sample: Q' = —1 5N (—7MCT)2, where M is the SATE within each

leaf
« Criterion: Q" — \ x (#leaves)
- Out of sample (e.g., cross validation): —& SN (76T — v#)2

21



Double trees

Procedure 1. DOUBLE-SAMPLE TREES

Double-sample trees split the available training data into two parts: one half for esti-
mating the desired response inside each leaf, and another half for placing splits.

Input: n training examples of the form (X, Yi) for regression trees or (X;, Yi, W;)
for causal trees, where X; are features, Y; is the response, and W; is the treatment
assignment. A minimum leaf size k.

1. Draw arandom subsample of size s from {1, ..., n} without replacement, and then
divide it into two disjoint sets of size |Z| = |s/2]| and | 7| = [s/2].

2. Grow a tree via recursive partitioning. The splits are chosen using any data from
the 7 sample and X- or W-observations from the Z sample, but without using
Y-observations from the Z-sample.

3. Estimate leaf-wise responses using only the Z-sample observations.

Double-sample regression trees make predictions /i (x) using (4) on the leaf containing x,
only using the Z-sample observations. The splitting criteria is the standard for CART
regression trees (minimizing mean-squared error of predictions). Splits are restricted so
that each leaf of the tree must contain & or more Z-sample observations.

Double-sample causal trees are defined similarly, except that for prediction we estimate
#(z) using (5) on the Z sample. Following Athey and Imbens [2016], the splits of the
tree are chosen by maximizing the variance of 7(X;) for i € J; see Remark 1 for details.
In addition, each leaf of the tree must contain k or more Z-sample observations of each
treatment class.

Figure 2:
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Propensity trees

Procedure 2. PROPENSITY TREES

Propensity trees use only the treatment assignment indicator W; to place splits, and
save the responses Y, for estimating .

Input: n training examples (X;, Y;, W;), where X; are features, Y; is the response, and
W; is the treatment assignment. A minimum leaf size k.

1. Draw a random subsample Z € {1, ..., n} of size |Z| = s (no replacement).

2. Train a classification tree using sample Z where the outcome is the treatment
assignment, i.e., on the (X;, W;) pairs with i € Z. Each leaf of the tree must have
k or more observations of each treatment class.

3. Estimate 7(x) using (5) on the leaf containing x.

In step 2, the splits are chosen by optimizing, e.g., the Gini criterion used by CART for
classification [Breiman et al., 1984].
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Expansions to causal forests

+ Two relevant papers: Athey and Tibshirani (2017) and Wager and
Athey (2017)

+ Main ideas: build off of honest causal trees, but get better
convergence properties for leaf-level predictions

- Validity of random forest for heterogeneous uncertainty: derived
from implicit boostrapped weighting, has CLT asymptotics for valid
confidence intervals (from infinitesimal jacknife). See, e.g., Wager,
Hastie, Efron (2014)

« Causal RF vs honest trees: weighting the contribution of individual
units to the leaf expectation by a function of how frequently they
occur in terminal node for a given covariate vector, x
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https://pdfs.semanticscholar.org/7cdb/392f5e9e0e378b8c46b9c454837e2b428026.pdf
https://www.gsb.stanford.edu/gsb-box/gsb-box-get-box-doc/441191/notcase
https://www.gsb.stanford.edu/gsb-box/gsb-box-get-box-doc/441191/notcase
http://www.jmlr.org/papers/volume15/wager14a/wager14a.pdf
http://www.jmlr.org/papers/volume15/wager14a/wager14a.pdf

Networks and interference
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Framework, and potential outcomes

Finite population P, with N total units.

« Binary adjacency matrix, G, with zero on diagonals
Covariates for each unit, X

Treatment D; € {0, 1} for each individual. Full collection denoted

D € DV.
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SUTVA and causal effects

+ Recall: if we invoke SUTVA, we can write observed outcomes as:
Y°bs = v;(D;).

« However: if individual outcomes depent on others’ assignment, we
instead write: Y°*S = Y;(D)

* Hence, given pairs d # d’ € D, causal effects are defined as
Yi(d) - Yi(d)

« If SUTVA does not hold, there are many more potential outcomes for
units.
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What to do? Athey, Eckles, Imbens (2017)

+ Focus on exact tests for the presence of
“spillovers”/“interference”/“peer effects”.

+ Are effects present or detectable?

+ Key insight: randomization allows for detection of the presence of

spillovers
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Returning to Fisher

« Recall in earlier weeks we defined Fisher’s exact p-values in the
context of completely randomized experiments.

- E.g., assuming SUTVA, and given n, treated units, n, control units, we
can calculate a test statistic T from:

_ Z Yobs Z Yobs

ID =1 ID =0
« Exact (finite sample) p-value given by:
p-value = Pr(|T'| > |T°®|)

- If sample size is large, we approximate the p-value via random
sampling.
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Multiple classes of (non-sharp) null hypotheses for peer effects

+ No treatment effects: Y;(d) — Y;(d’) Vi, and all pairsd,d’ € D
- No spillover effects (but own treatment effects): Y;(d) — Y;(d’) for all
i,and all pairsd,d’ € D, sit. d; = d

« No higher order effects (but own treatment and friends’ treatment):
Yi(d) — Y;(d')Vi, and all pairsd.d’ € D st. d; = d/ for all unitsj s.t.
dist(i,j) < 2, given distance in graphical adjacency G.
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Proposed randomization inference algorithm

« Implementation:
https://github.com/deaneckles/randomization_inference
+ Steps:

1.
2%

Select a set of focal units, F.

Choose a test statistic, T(Yf, D). Function of all treatment assignments,
but only focal unit outcomes.

Calculate T(YgPs, DOPS)

Sample a permuted vector D* s.t. all focal units receive same
treatment as observed, forcing D} = D,?’bs VieF.

Compute randomized statistic T(Y2"S, D*)

Repeat prior to steps B many times. Compare observed statistc against
randomly sampled statistics, in fashion of traditional Fisherian
comparison.
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https://github.com/deaneckles/randomization_inference

Moving forward
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+ Largely a survey of classic and modern approaches to causal
inference

- Different paradigms: experimental vs. observational, potential
outcomes vs. DAGs

» Thinking through unconfoundedness/ignorability

« Causal inference as a missing data/reweighting problem

« What to do in the presence of non-compliance

« Thinking about model sensitivity: unobserved confounding, model
selection

« How to bring in modern approaches: segment prediction component
from causal component

« And never forget about model uncertainty
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Some important things we didn’t cover

» Hierarchical models
« Empirical Bayes
« Bandit problems for business experiments
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http://www.stat.columbia.edu/~gelman/research/published/HierarchicalCausal.pdf
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3157819
https://support.google.com/analytics/answer/2844870?hl=en

Further references on modern approaches

Gaussian processes:

« P. 0. Hoyer, D. Janzing, ). M. Mooij, J. Peters, and B. Scholkopf.
Nonlinear causal discovery with additive noise models. In Advances
in Neural Information Processing Systems, pages 689-696, 2009.

- Zigler, Corwin M., Francesca Dominici, and Yun Wang. "Estimating
causal effects of air quality regulations using principal stratification
for spatially correlated multivariate intermediate outcomes.”
Biostatistics 13.2 (2012): 289-302.
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Further references (2)

Neural nets:

« Shalit, Johansson & Sontag. “Bounding and Minimizing
Counterfactual Error.” arXiv:1606.03976

 Lopez-Paz, D. Muandet, K., Scholkopf, B., Tolstikhin, I. Towards a
Learning Theory of Cause-Effect Inference.
https://arxiv.org/abs/1502.02398.(2015)

“Causal” Lasso:

« Farrell, M. "Robust inference on average treatment effects with
possibly more covariates than observations.” Journal of
Econometrics, 189(1), 1-23 (2015).
« Athey, Imbens & Wager. “Efficient Inference of Average Treatment
Effects in High Dimensions via Approximate Residual Balancing.”
arXiv:1604.07125 (2016). 36



To my knoweldge, things people haven't really done well:

+ Deep learning and causal inference

- E.g., Synthetic controls with (regularized) RNNs

 E.g., “Honest” neural network approaches for heterogeneous causal
effects

« Challenges with both: how to quantify uncertainty in the deep
learning context
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Wrapping up

« | will make explicit announcements about the expectations for the
final exam over email

« Folks writing final papers must reach out to me about their progress,
and any questions pertaining to format

* It's been a profound pleasure to spend the semester with you

« If you can now talk to someone for more than 10 minutes about why
“Correlation doesn’t equal causation“—or even better—why naive
prediction doesn’t generally yield valid causal estimates, | will
consider the course a success.
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